A320122 Numbers that are not Keith numbers in any base.
12, 30, 390, 1170, 1200, 1560, 2340, 2760, 3120, 3900, 4680, 6120, 6240, 7680, 7800, 8460, 10020, 10140, 10950, 11580, 15090, 15480, 17160, 17580, 18360, 19140, 20280, 20700, 20940, 21480, 23040, 23280, 24060, 24210, 24960, 26550, 28740, 29250, 29520, 29670, 30060, 31080, 32400
Offset: 1
Examples
a(1) = 12 because 12 is not a Keith number in any base from 2 to 12, while all previous numbers are in some base. For example, with b = 2, the sequence is : 1, 1, 0, 0, 2, 3, 5, 10, 20, ...; it doesn't contain 12. See A251703.
Links
- Arie Bos, Inventory of n-step Fibonacci sequences, 2015.
Crossrefs
Cf. A007629 (Keith numbers in base 10).
Programs
-
Maple
fibo:=proc(n, b) local L,m,M,k: L:=convert(n,base,b):m:=nops(L):M:=seq(L[m+1-k],k=1..m): while M[m]
-
PARI
iskb(n, b) = if(nA007629 isok(n) = if (n<=2, 0, for(b=2, n-1, if (iskb(n, b), return(0))); return (1)); \\ Michel Marcus, Oct 08 2018
-
Python
def digits(n, b): r = [] m = n while m > 0: r = [m % b] + r m = m // b return r def fibo(n, b): L = digits(n, b) m = len(L) - 1 while L[m] < n: L.append(sum(k for k in L)) L.pop(0) return L[m] == n def test(n): for b in range(2, n + 1): if fibo(n, b): return True return False print([n for n in range(2, 2001) if not test(n)])
Extensions
More terms from Michel Marcus, Oct 08 2018
Comments