A320154 Number of series-reduced balanced rooted trees whose leaves form a set partition of {1,...,n}.
1, 2, 5, 18, 92, 588, 4328, 35920, 338437, 3654751, 45105744, 625582147, 9539374171, 157031052142, 2757275781918, 51293875591794, 1007329489077804, 20840741773898303, 453654220906310222, 10380640686263467204, 249559854371799622350, 6301679967177242849680
Offset: 1
Keywords
Examples
The a(1) = 1 through a(4) = 18 rooted trees: (1) (12) (123) (1234) ((1)(2)) ((1)(23)) ((1)(234)) ((2)(13)) ((12)(34)) ((3)(12)) ((13)(24)) ((1)(2)(3)) ((14)(23)) ((2)(134)) ((3)(124)) ((4)(123)) ((1)(2)(34)) ((1)(3)(24)) ((1)(4)(23)) ((2)(3)(14)) ((2)(4)(13)) ((3)(4)(12)) ((1)(2)(3)(4)) (((1)(2))((3)(4))) (((1)(3))((2)(4))) (((1)(4))((2)(3)))
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; gug[m_]:=Prepend[Join@@Table[Union[Sort/@Tuples[gug/@mtn]],{mtn,Select[sps[m],Length[#]>1&]}],m]; Table[Length[Select[gug[Range[n]],SameQ@@Length/@Position[#,_Integer]&]],{n,9}]
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} b(n,k)={my(u=vector(n), v=vector(n)); u[1]=k; u=EulerT(u); while(u, v+=u; u=EulerT(u)-u); v} seq(n)={my(M=Mat(vectorv(n,k,b(n,k)))); vector(n, k, sum(i=1, k, binomial(k,i)*(-1)^(k-i)*M[i,k]))} \\ Andrew Howroyd, Oct 26 2018
Extensions
Terms a(9) and beyond from Andrew Howroyd, Oct 26 2018
Comments