A320169 Number of balanced enriched p-trees of weight n.
1, 2, 3, 6, 9, 20, 31, 70, 114, 243, 415, 961, 1603, 3564, 6559, 14913, 26630, 60037, 110160, 248859, 458445, 1001190, 1882350, 4220358, 7765303, 16822107, 32307240, 70081784, 133716083, 291788153, 561823990, 1230204229, 2396185727, 5176454708, 10220127290
Offset: 1
Keywords
Examples
The a(1) = 1 through a(6) = 20 balanced enriched p-trees: 1 2 3 4 5 6 (11) (21) (22) (32) (33) (111) (31) (41) (42) (211) (221) (51) (1111) (311) (222) ((11)(11)) (2111) (321) (11111) (411) ((21)(11)) (2211) ((111)(11)) (3111) (21111) (111111) ((21)(21)) ((22)(11)) ((31)(11)) ((111)(21)) ((21)(111)) ((211)(11)) ((111)(111)) ((1111)(11)) ((11)(11)(11))
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..500
Crossrefs
Programs
-
Mathematica
eptrs[n_]:=Prepend[Join@@Table[Tuples[eptrs/@p],{p,Rest[IntegerPartitions[n]]}],n]; Table[Length[Select[eptrs[n],SameQ@@Length/@Position[#,_Integer]&]],{n,12}]
-
PARI
seq(n)={my(p=x/(1-x) + O(x*x^n), q=0); while(p, q+=p; p = 1/prod(k=1, n, 1 - polcoef(p,k)*x^k + O(x*x^n)) - 1 - p); Vec(q)} \\ Andrew Howroyd, Oct 26 2018
Extensions
Terms a(16) and beyond from Andrew Howroyd, Oct 26 2018
Comments