cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320169 Number of balanced enriched p-trees of weight n.

Original entry on oeis.org

1, 2, 3, 6, 9, 20, 31, 70, 114, 243, 415, 961, 1603, 3564, 6559, 14913, 26630, 60037, 110160, 248859, 458445, 1001190, 1882350, 4220358, 7765303, 16822107, 32307240, 70081784, 133716083, 291788153, 561823990, 1230204229, 2396185727, 5176454708, 10220127290
Offset: 1

Views

Author

Gus Wiseman, Oct 07 2018

Keywords

Comments

An enriched p-tree of weight n is either the number n itself or a finite sequence of enriched p-trees whose weights are weakly decreasing and sum to n.
A tree is balanced if all leaves have the same height.

Examples

			The a(1) = 1 through a(6) = 20 balanced enriched p-trees:
  1  2     3      4           5            6
     (11)  (21)   (22)        (32)         (33)
           (111)  (31)        (41)         (42)
                  (211)       (221)        (51)
                  (1111)      (311)        (222)
                  ((11)(11))  (2111)       (321)
                              (11111)      (411)
                              ((21)(11))   (2211)
                              ((111)(11))  (3111)
                                           (21111)
                                           (111111)
                                           ((21)(21))
                                           ((22)(11))
                                           ((31)(11))
                                           ((111)(21))
                                           ((21)(111))
                                           ((211)(11))
                                           ((111)(111))
                                           ((1111)(11))
                                           ((11)(11)(11))
		

Crossrefs

Programs

  • Mathematica
    eptrs[n_]:=Prepend[Join@@Table[Tuples[eptrs/@p],{p,Rest[IntegerPartitions[n]]}],n];
    Table[Length[Select[eptrs[n],SameQ@@Length/@Position[#,_Integer]&]],{n,12}]
  • PARI
    seq(n)={my(p=x/(1-x) + O(x*x^n), q=0); while(p, q+=p; p = 1/prod(k=1, n, 1 - polcoef(p,k)*x^k + O(x*x^n)) - 1 - p); Vec(q)} \\ Andrew Howroyd, Oct 26 2018

Extensions

Terms a(16) and beyond from Andrew Howroyd, Oct 26 2018