A320173 Number of inequivalent colorings of series-reduced balanced rooted trees with n leaves.
1, 2, 3, 12, 23, 84, 204, 830, 2940, 13397, 58794, 283132, 1377302, 7087164, 37654377, 209943842, 1226495407, 7579549767, 49541194089, 341964495985, 2476907459261, 18703210872343, 146284738788714, 1179199861398539, 9760466433602510, 82758834102114911, 717807201648148643
Offset: 1
Keywords
Examples
Inequivalent representatives of the a(1) = 1 through a(5) = 23 colorings: 1 (11) (111) (1111) (11111) (12) (112) (1112) (11112) (123) (1122) (11122) (1123) (11123) (1234) (11223) ((11)(11)) (11234) ((11)(12)) (12345) ((11)(22)) ((11)(111)) ((11)(23)) ((11)(112)) ((12)(12)) ((11)(122)) ((12)(13)) ((11)(123)) ((12)(34)) ((11)(223)) ((11)(234)) ((12)(111)) ((12)(112)) ((12)(113)) ((12)(123)) ((12)(134)) ((12)(345)) ((13)(122)) ((22)(111)) ((23)(111)) ((23)(114))
Crossrefs
Programs
-
PARI
\\ See links in A339645 for combinatorial species functions. cycleIndexSeries(n)={my(p=x*sv(1) + O(x*x^n), q=0); while(p, q+=p; p=sEulerT(p)-1-p); q} InequivalentColoringsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 11 2020
Extensions
Terms a(8) and beyond from Andrew Howroyd, Dec 11 2020
Comments