A320176 Number of series-reduced rooted trees whose leaves are strict integer partitions whose multiset union is a strict integer partition of n.
1, 1, 3, 3, 5, 13, 15, 23, 33, 99, 109, 183, 251, 383, 1071, 1261, 2007, 2875, 4291, 5829, 16297, 18563, 30313, 42243, 63707, 85351, 125465, 297843, 356657, 556729, 783637, 1151803, 1564173, 2249885, 2988729, 6803577, 8026109, 12465665, 17124495, 25272841, 33657209
Offset: 1
Keywords
Examples
The a(1) = 1 through a(7) = 15 rooted trees: (1) (2) (3) (4) (5) (6) (7) (21) (31) (32) (42) (43) ((1)(2)) ((1)(3)) (41) (51) (52) ((1)(4)) (321) (61) ((2)(3)) ((1)(5)) (421) ((2)(4)) ((1)(6)) ((1)(23)) ((2)(5)) ((2)(13)) ((3)(4)) ((3)(12)) ((1)(24)) ((1)(2)(3)) ((2)(14)) ((1)((2)(3))) ((4)(12)) ((2)((1)(3))) ((1)(2)(4)) ((3)((1)(2))) ((1)((2)(4))) ((2)((1)(4))) ((4)((1)(2)))
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; got[m_]:=Prepend[Join@@Table[Union[Sort/@Tuples[got/@p]],{p,Select[sps[m],Length[#]>1&]}],m]; Table[Length[Join@@Table[got[m],{m,Select[IntegerPartitions[n],UnsameQ@@#&]}]],{n,20}]
-
PARI
\\ here S(n) is first n terms of A005804. EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} b(n,k)={my(v=vector(n)); for(n=1, n, v[n]=binomial(n+k-1, n) + EulerT(v[1..n])[n]); v} S(n)={my(M=Mat(vectorv(n, k, b(n,k)))); vector(n, k, sum(i=1, k, binomial(k, i)*(-1)^(k-i)*M[i,k]))} seq(n)={my(u=S((sqrtint(8*n+1)-1)\2)); [sum(i=1, poldegree(p), polcoef(p,i)*u[i]) | p <- Vec(prod(k=1, n, 1 + x^k*y + O(x*x^n))-1)]} \\ Andrew Howroyd, Oct 26 2018
Formula
Extensions
Terms a(31) and beyond from Andrew Howroyd, Oct 26 2018
Comments