A320177 Number of series-reduced rooted identity trees whose leaves are strict integer partitions whose multiset union is an integer partition of n.
1, 1, 3, 5, 11, 26, 65, 169, 463, 1294, 3691, 10700, 31417, 93175, 278805, 840424, 2549895, 7780472, 23860359, 73500838, 227330605, 705669634, 2197750615, 6865335389, 21505105039, 67533738479, 212575923471, 670572120240, 2119568530289, 6712115439347
Offset: 1
Keywords
Examples
The a(1) = 1 through a(5) = 11 rooted trees: (1) (2) (3) (4) (5) (21) (31) (32) ((1)(2)) ((1)(3)) (41) ((1)(12)) ((1)(4)) ((1)((1)(2))) ((2)(3)) ((1)(13)) ((2)(12)) ((1)((1)(3))) ((2)((1)(2))) ((1)((1)(12))) ((1)((1)((1)(2))))
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; gog[m_]:=If[UnsameQ@@m,Prepend[#,m],#]&[Join@@Table[Select[Union[Sort/@Tuples[gog/@p]],UnsameQ@@#&],{p,Select[mps[m],Length[#]>1&]}]]; Table[Length[Join@@Table[gog[m],{m,IntegerPartitions[n]}]],{n,10}]
-
PARI
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)} seq(n)={my(p=prod(k=1, n, 1 + x^k + O(x*x^n)), v=vector(n)); for(n=1, n, v[n]=polcoef(p, n) + WeighT(v[1..n])[n]); v} \\ Andrew Howroyd, Oct 25 2018
Extensions
Terms a(13) and beyond from Andrew Howroyd, Oct 25 2018
Comments