A320221 Irregular triangle where T(n,k) is the number of unlabeled series-reduced rooted trees with n leaves in which every leaf is at height k, (n>=1, min(1,n-1) <= k <= log_2(n)).
1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 6, 1, 1, 7, 1, 1, 11, 4, 1, 13, 6, 1, 20, 16, 1, 23, 23, 1, 33, 46, 1, 40, 70, 1, 54, 127, 1, 1, 65, 189, 1, 1, 87, 320, 5, 1, 104, 476, 10, 1, 136, 771, 32, 1, 164, 1145, 63, 1, 209, 1795, 154, 1, 252, 2657, 304, 1, 319, 4091, 656
Offset: 1
Examples
Triangle begins: 1 1 1 1 1 1 1 1 3 1 3 1 6 1 1 7 1 1 11 4 1 13 6 1 20 16 1 23 23 1 33 46 1 40 70 The T(11,3) = 6 rooted trees: (((oo)(oo))((oo)(ooooo))) (((oo)(oo))((ooo)(oooo))) (((oo)(ooo))((oo)(oooo))) (((oo)(ooo))((ooo)(ooo))) (((oo)(oo))((oo)(oo)(ooo))) (((oo)(ooo))((oo)(oo)(oo)))
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1154 (rows 1..200)
Crossrefs
Programs
-
Mathematica
qurt[n_]:=If[n==1,{{}},Join@@Table[Union[Sort/@Tuples[qurt/@ptn]],{ptn,Select[IntegerPartitions[n],Length[#]>1&]}]]; DeleteCases[Table[Length[Select[qurt[n],SameQ[##,k]&@@Length/@Position[#,{}]&]],{n,10},{k,0,n-1}],0,{2}]
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} T(n)={my(u=vector(n), v=vector(n), h=1); u[1]=1; while(u, v+=u*h; h*=x; u=EulerT(u)-u); v[1]=x; [Vecrev(p/x) | p<-v]} { my(A=T(15)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Dec 09 2020
Extensions
Terms a(36) and beyond from Andrew Howroyd, Dec 09 2020
Name clarified by Andrew Howroyd, Dec 09 2020