A320291 Number of singleton-free multiset partitions of integer partitions of n with no 1's.
1, 0, 0, 0, 1, 1, 3, 3, 7, 8, 15, 19, 36, 46, 79, 110, 181, 254, 407, 580, 907, 1309, 2004, 2909, 4410, 6407, 9599, 13984, 20782, 30252, 44677, 64967, 95414, 138563, 202527, 293583, 427442, 618337, 897023, 1295020, 1872696, 2697777, 3889964, 5591917, 8041593, 11535890
Offset: 0
Keywords
Examples
The a(4) = 1 through a(10) = 15 multiset partitions: ((22)) ((23)) ((24)) ((25)) ((26)) ((27)) ((28)) ((33)) ((34)) ((35)) ((36)) ((37)) ((222)) ((223)) ((44)) ((45)) ((46)) ((224)) ((225)) ((55)) ((233)) ((234)) ((226)) ((2222)) ((333)) ((235)) ((22)(22)) ((2223)) ((244)) ((22)(23)) ((334)) ((2224)) ((2233)) ((22222)) ((22)(24)) ((22)(33)) ((23)(23)) ((22)(222))
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; Table[Length[Select[Join@@mps/@Select[IntegerPartitions[n],FreeQ[#,1]&],FreeQ[Length/@#,1]&]],{n,20}]
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} seq(n)={my(v=vector(n,i,i>1)); concat([1], EulerT(EulerT(v)-v))} \\ Andrew Howroyd, Oct 25 2018
Formula
Euler transform of A083751. - Andrew Howroyd, Oct 25 2018
Extensions
Terms a(21) and beyond from Andrew Howroyd, Oct 25 2018