A320292 Zerofree numbers k such that the product (m+n)*p, where m,n are the first and the last digits of k, and p is the number which is the part of k between m and n, is a divisor of k.
126, 162, 212, 216, 234, 413, 432, 672, 864, 891, 918, 2112, 2132, 2176, 2691, 2772, 2871, 2912, 3168, 4144, 4199, 4224, 4455, 5184, 6336, 8448, 21372, 21771, 23391, 43673, 53768, 55328, 64116, 171432, 228177, 316764, 412272, 515484, 594342, 638715, 663832, 824544, 1588248, 5136248, 7222932
Offset: 1
Examples
234 is divisible by 3*(2+4). 4199 is divisible by 19*(4+9). 7222932 is divisible by 22293*(7+2).
Programs
-
Mathematica
Select[Range[100, 10^6], And[FreeQ[#2, 0], Mod[#1, If[#2 == 0, #1 - 1, #2] & @@ {#1, (First@ #2 + Last@ #2) FromDigits@ Most@ Rest@ #2}] == 0] & @@ {#, IntegerDigits@ #} &] (* Michael De Vlieger, Oct 11 2018 *)
-
PARI
isok(n) = {d = digits(n); if ((#d >= 3) && vecmin(d), x = d[1]; y = d[#d]; w = vector(#d-2, k, d[k+1]); z = fromdigits(w); if (z, return (!(n % (z*(x+y))))); ); return (0); } \\ Michel Marcus, Oct 10 2018
Comments