A320294 Number of series-reduced rooted trees whose leaves are non-singleton integer partitions whose multiset union is an integer partition of n with no 1's.
0, 0, 0, 1, 1, 3, 3, 7, 8, 15, 19, 37, 48, 87, 126, 227, 342, 611, 964, 1719, 2806, 4975, 8327, 14782, 25157, 44609, 76972, 136622, 237987, 422881, 742149, 1320825, 2331491, 4156392, 7370868, 13164429, 23433637, 41928557, 74871434, 134203411, 240284935, 431437069
Offset: 1
Keywords
Examples
The a(4) = 1 through a(10) = 15 trees: (22) (32) (33) (43) (44) (54) (55) (42) (52) (53) (63) (64) (222) (322) (62) (72) (73) (332) (333) (82) (422) (432) (433) (2222) (522) (442) ((22)(22)) (3222) (532) ((22)(23)) (622) (3322) (4222) (22222) ((22)(24)) ((22)(33)) ((23)(23)) ((22)(222))
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..500
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; pgtm[m_]:=Prepend[Join@@Table[Union[Sort/@Tuples[pgtm/@p]],{p,Select[mps[m],Length[#]>1&]}],m]; Table[Sum[Length[Select[pgtm[m],FreeQ[#,{_}]&]],{m,Select[IntegerPartitions[n],FreeQ[#,1]&]}],{n,10}]
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} seq(n)={my(p=1/prod(k=2, n, 1 - x^k + O(x*x^n)), v=vector(n)); for(n=2, n, v[n]=polcoef(p, n) - 1 + EulerT(v[1..n])[n]); v} \\ Andrew Howroyd, Oct 25 2018
Extensions
Terms a(16) and beyond from Andrew Howroyd, Oct 25 2018
Comments