A320295 Number of series-reduced rooted trees whose leaves are non-singleton integer partitions whose multiset union is an integer partition of n.
0, 1, 2, 5, 8, 19, 34, 80, 165, 394, 892, 2192, 5232, 13057, 32271, 81568, 205748, 525735, 1344828, 3467415, 8960849, 23280323, 60639680, 158559047, 415631368, 1092734050, 2879420753, 7605713020, 20130266302, 53386744298, 141836904569, 377479973474, 1006189769886
Offset: 1
Keywords
Examples
The a(2) = 1 through a(6) = 19 trees: (11) (21) (22) (32) (33) (111) (31) (41) (42) (211) (221) (51) (1111) (311) (222) ((11)(11)) (2111) (321) (11111) (411) ((11)(12)) (2211) ((11)(111)) (3111) (21111) (111111) ((11)(13)) ((11)(22)) ((12)(12)) ((11)(112)) ((12)(111)) ((11)(1111)) ((111)(111)) ((11)(11)(11)) ((11)((11)(11)))
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..500
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; pgtm[m_]:=Prepend[Join@@Table[Union[Sort/@Tuples[pgtm/@p]],{p,Select[mps[m],Length[#]>1&]}],m]; Table[Sum[Length[Select[pgtm[m],FreeQ[#,{_}]&]],{m,IntegerPartitions[n]}],{n,14}]
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} seq(n)={my(p=1/prod(k=1, n, 1 - x^k + O(x*x^n)), v=vector(n)); for(n=1, n, v[n]=polcoef(p, n) - 1 + EulerT(v[1..n])[n]); v} \\ Andrew Howroyd, Oct 25 2018
Extensions
Terms a(12) and beyond from Andrew Howroyd, Oct 25 2018
Comments