cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320296 Number of series-reduced rooted trees whose leaves form an integer partition of n with no 1's.

Original entry on oeis.org

0, 1, 1, 2, 2, 5, 6, 15, 22, 51, 86, 195, 354, 781, 1512, 3286, 6602, 14269, 29424, 63494, 133298, 287909, 612188, 1325375, 2844448, 6176145, 13348858, 29074164, 63187176, 138044144, 301350424, 660265471, 1446678326, 3178246273, 6985464590, 15384556290
Offset: 1

Views

Author

Gus Wiseman, Oct 09 2018

Keywords

Comments

Also phylogenetic trees with n unlabeled objects and no singleton leaves.

Examples

			The a(2) = 1 through a(9) = 22 trees:
2   3   4     5     6        7        8           9
        (22)  (23)  (24)     (25)     (26)        (27)
                    (33)     (34)     (35)        (36)
                    (222)    (223)    (44)        (45)
                    (2(22))  ((22)3)  (224)       (225)
                             (2(23))  (233)       (234)
                                      (2222)      (333)
                                      ((22)4)     (2223)
                                      (2(24))     ((22)5)
                                      ((23)3)     (2(25))
                                      (2(33))     ((23)4)
                                      (2(222))    (2(34))
                                      (22(22))    ((24)3)
                                      ((22)(22))  ((33)3)
                                      (2(2(22)))  (2(22)3)
                                                  (2(223))
                                                  (22(23))
                                                  (3(222))
                                                  ((2(22))3)
                                                  ((22)(23))
                                                  (2((22)3))
                                                  (2(2(23)))
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    t[n_]:=t[n]=If[PrimeQ[n],{n},Join@@Table[Union[Sort/@Tuples[t/@fac]],{fac,Select[facs[n],Length[#]>1&]}]];
    Table[Sum[Length[t[Times@@Prime/@ptn]],{ptn,Select[IntegerPartitions[n],FreeQ[#,1]&]}],{n,15}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(v=vector(n)); for(n=2, n, v[n]=1 + EulerT(v[1..n])[n]); v} \\ Andrew Howroyd, Oct 25 2018

Extensions

Terms a(26) and beyond from Andrew Howroyd, Oct 25 2018