A320296 Number of series-reduced rooted trees whose leaves form an integer partition of n with no 1's.
0, 1, 1, 2, 2, 5, 6, 15, 22, 51, 86, 195, 354, 781, 1512, 3286, 6602, 14269, 29424, 63494, 133298, 287909, 612188, 1325375, 2844448, 6176145, 13348858, 29074164, 63187176, 138044144, 301350424, 660265471, 1446678326, 3178246273, 6985464590, 15384556290
Offset: 1
Keywords
Examples
The a(2) = 1 through a(9) = 22 trees: 2 3 4 5 6 7 8 9 (22) (23) (24) (25) (26) (27) (33) (34) (35) (36) (222) (223) (44) (45) (2(22)) ((22)3) (224) (225) (2(23)) (233) (234) (2222) (333) ((22)4) (2223) (2(24)) ((22)5) ((23)3) (2(25)) (2(33)) ((23)4) (2(222)) (2(34)) (22(22)) ((24)3) ((22)(22)) ((33)3) (2(2(22))) (2(22)3) (2(223)) (22(23)) (3(222)) ((2(22))3) ((22)(23)) (2((22)3)) (2(2(23)))
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..500
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; t[n_]:=t[n]=If[PrimeQ[n],{n},Join@@Table[Union[Sort/@Tuples[t/@fac]],{fac,Select[facs[n],Length[#]>1&]}]]; Table[Sum[Length[t[Times@@Prime/@ptn]],{ptn,Select[IntegerPartitions[n],FreeQ[#,1]&]}],{n,15}]
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} seq(n)={my(v=vector(n)); for(n=2, n, v[n]=1 + EulerT(v[1..n])[n]); v} \\ Andrew Howroyd, Oct 25 2018
Extensions
Terms a(26) and beyond from Andrew Howroyd, Oct 25 2018
Comments