cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320342 Maximum term in Cunningham chain of the first kind generated by the n-th prime.

Original entry on oeis.org

47, 7, 47, 7, 47, 13, 17, 19, 47, 59, 31, 37, 167, 43, 47, 107, 59, 61, 67, 71, 73, 79, 167, 2879, 97, 101, 103, 107, 109, 227, 127, 263, 137, 139, 149, 151, 157, 163, 167, 347, 2879, 181, 383, 193, 197, 199, 211, 223, 227, 229, 467, 479, 241, 503, 257, 263, 269, 271, 277, 563, 283, 587, 307, 311, 313, 317, 331, 337, 347, 349
Offset: 1

Views

Author

Pierandrea Formusa, Dec 10 2018

Keywords

Comments

No term is a Sophie Germain prime.
A181697 is the sequence of the lengths of the chains in the name.

Examples

			a(1)=47 as prime(1)=2 and the Cunningham chain generated by 2 is (2,5,11,23,47), with maximum item 47.
		

Crossrefs

Cf. A181697.

Programs

  • Mathematica
    a[n_] := NestWhile[2#+1&, n, PrimeQ, 1, Infinity, -1]; a/@Prime@Range@70  (* Amiram Eldar, Dec 11 2018 *)
  • Python
    def cunningham_chain(p,t):
        # returns the Cunningham chain generated by p of type t (1 or 2)
        from sympy.ntheory import isprime
        if not(isprime(p)):
            raise Exception("Invalid starting number! It must be prime")
        if t!=1 and t!=2:
            raise Exception("Invalid type! It must be 1 or 2")
        elif t==1: k=t
        else: k=-1
        cunn_ch=[]
        cunn_ch.append(p)
        while isprime(2*p+k):
            p=2*p+k
            cunn_ch.append(p)
        return(cunn_ch)
    from sympy import prime
    n=71
    r=""
    for i in range(1,n):
        cunn_ch=(cunningham_chain(prime(i),1))
        last_item=cunn_ch[-1]
        r += ","+str(last_item)
    print(r[1:])