A320344 Expansion of e.g.f. log(1 + x)/(1 - log(1 + x))^2.
0, 1, 3, 8, 26, 94, 406, 1896, 10440, 59472, 405264, 2673648, 22396128, 160828368, 1704287568, 11993279232, 177349981824, 957018589056, 25766036316288, 33555346603776, 5403108443855616, -28811285794990080, 1643455634670489600, -21001090458387594240, 692074413969784289280
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..451
Programs
-
Maple
seq(n!*coeff(series(log(1+x)/(1-log(1+x))^2,x=0,25),x,n),n=0..24); # Paolo P. Lava, Jan 29 2019
-
Mathematica
nmax = 24; CoefficientList[Series[Log[1 + x]/(1 - Log[1 + x])^2, {x, 0, nmax}], x] Range[0, nmax]! Table[Sum[StirlingS1[n, k] k k!, {k, 0, n}], {n, 0, 24}]
-
PARI
my(N=40, x='x+O('x^N)); concat(0, Vec(serlaplace(sum(k=0, N, k*log(1+x)^k)))) \\ Seiichi Manyama, Apr 22 2022
Formula
a(n) = Sum_{k=0..n} Stirling1(n,k)*A001563(k).
E.g.f.: Sum_{k>=0} k * log(1+x)^k. - Seiichi Manyama, Apr 22 2022