cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320346 a(n) is the number of perfect matchings in the graph with vertices labeled 1 to 2n with edges {i,j} for 1<=|i-j|<=4.

Original entry on oeis.org

1, 1, 3, 12, 35, 105, 329, 1014, 3116, 9610, 29625, 91279, 281303, 866948, 2671727, 8233671, 25374513, 78198928, 240992592, 742688720, 2288811009, 7053635369, 21737825143, 66991419284, 206453506615, 636246416105, 1960778041673, 6042706771910, 18622355183932, 57390193784986, 176864543185497
Offset: 0

Views

Author

Robert Israel, Jan 22 2019

Keywords

Examples

			The a(3) = 12 matchings are (12)(34)(56), (12)(35)(46), (12)(36)(45), (13)(24)(56), (13)(25)(46), (13)(26)(45), (14)(23)(56), (14)(25)(36), (14)(26)(35), (15)(23)(46), (15)(24)(36), (15)(26)(34).
		

Crossrefs

Cf. A052967.

Programs

  • Maple
    f:= gfun:-rectoproc({a(n) + 2*a(n + 1) - a(n + 2) - 2*a(n + 3) - 3*a(n + 4) - 6*a(n + 5)- a(n + 6) - 2*a(n + 7) + a(n + 8), a(0) = 1, a(1) = 1, a(2) = 3, a(3) = 12, a(4) = 35, a(5) = 105, a(6) = 329, a(7) = 1014}, a(n), remember):
    map(f, [$0..100]);
  • Mathematica
    LinearRecurrence[{2, 1, 6, 3, 2, 1, -2, -1}, {1, 1, 3, 12, 35, 105, 329, 1014}, 40] (* Jean-François Alcover, Apr 30 2019 *)

Formula

G.f.: (-x^4 - x^3 - x + 1)/(1 - 2*x - x^2 - 6*x^3 - 3*x^4 - 2*x^5 - x^6 + 2*x^7 + x^8).

Extensions

a(0)=1 prepended and edited by Alois P. Heinz, Feb 28 2019