A320347 Number of partitions of n into distinct parts (a_1, a_2, ... , a_m) (a_1 > a_2 > ... > a_m and Sum_{k=1..m} a_k = n) such that a1 - a2, a2 - a3, ..., a_{m-1} - a_m are different.
1, 1, 2, 2, 3, 3, 5, 6, 6, 9, 11, 10, 15, 18, 19, 24, 31, 29, 40, 44, 51, 56, 72, 69, 90, 97, 114, 125, 154, 151, 192, 207, 237, 255, 304, 314, 377, 401, 457, 493, 573, 596, 698, 750, 845, 905, 1034, 1104, 1255, 1354, 1507, 1624, 1817, 1955, 2178, 2357, 2605, 2794, 3077, 3380
Offset: 1
Keywords
Examples
n = 9 [9] ooooooooo ------------------------------------ [8, 1] *******o a_1 - a_2 = 7. oooooooo ------------------------------------ [7, 2] *****oo a_1 - a_2 = 5. ooooooo ------------------------------------ [6, 3] ***ooo a_1 - a_2 = 3. oooooo ------------------------------------ [6, 2, 1] *o a_2 - a_3 = 1. ****oo a_1 - a_2 = 4. oooooo ------------------------------------ [5, 4] *oooo a_1 - a_2 = 1. ooooo ------------------------------------ a(9) = 6.
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 1..500 (terms 1..100 from Seiichi Manyama)
- Gus Wiseman, Sequences counting and ranking integer partitions by the differences of their successive parts.
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&UnsameQ@@Differences[#]&]],{n,0,30}] (* Gus Wiseman, Mar 27 2021 *)
Comments