cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A364272 Number of strict integer partitions of n containing the sum of some subset of the parts. A variation of sum-full strict partitions.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 3, 1, 4, 3, 8, 6, 11, 10, 17, 16, 26, 25, 39, 39, 54, 60, 82, 84, 116, 126, 160, 177, 222, 242, 302, 337, 402, 453, 542, 601, 722, 803, 936, 1057, 1234, 1373, 1601, 1793, 2056, 2312, 2658, 2950, 3395, 3789, 4281, 4814, 5452, 6048
Offset: 0

Views

Author

Gus Wiseman, Aug 01 2023

Keywords

Comments

First differs from A316402 at a(16) = 11 due to (7,5,3,1).

Examples

			The a(6) = 1 through a(16) = 11 partitions (A=10):
  (321) . (431) . (532)  (5321) (642)  (5431) (743)  (6432)  (853)
                  (541)         (651)  (6421) (752)  (6531)  (862)
                  (4321)        (5421) (7321) (761)  (7431)  (871)
                                (6321)        (5432) (7521)  (6532)
                                              (6431) (9321)  (6541)
                                              (6521) (54321) (7432)
                                              (7421)         (7621)
                                              (8321)         (8431)
                                                             (8521)
                                                             (A321)
                                                             (64321)
		

Crossrefs

The non-strict complement is A237667, ranks A364531.
The non-strict version is A237668, ranks A364532.
The complement in strict partitions is A364349, binary A364533.
The linear combination-free version is A364350.
For subsets of {1..n} we have A364534, complement A151897.
The binary version is A364670, allowing re-used parts A363226.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A108917 counts knapsack partitions, strict A275972, ranks A299702.
A236912 counts binary sum-free partitions, complement A237113.
A323092 counts double-free partitions, ranks A320340.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Intersection[#, Total/@Subsets[#,{2,Length[#]}]]!={}&]],{n,0,30}]

A320348 Number of partition into distinct parts (a_1, a_2, ... , a_m) (a_1 > a_2 > ... > a_m and Sum_{k=1..m} a_k = n) such that a1 - a2, a2 - a_3, ... , a_{m-1} - a_m, a_m are different.

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 4, 4, 4, 6, 9, 7, 13, 12, 13, 16, 22, 17, 28, 28, 31, 36, 50, 45, 63, 62, 74, 78, 102, 92, 123, 123, 146, 148, 191, 181, 228, 233, 280, 283, 348, 350, 420, 437, 518, 523, 616, 641, 727, 774, 884, 911, 1038, 1102, 1240, 1292, 1463, 1530, 1715, 1861, 2002
Offset: 1

Views

Author

Seiichi Manyama, Oct 11 2018

Keywords

Comments

Also the number of integer partitions of n whose parts cover an initial interval of positive integers with distinct multiplicities. Also the number of integer partitions of n whose multiplicities cover an initial interval of positive integers and are distinct (see A048767 for a bijection). - Gus Wiseman, May 04 2019

Examples

			n = 9
[9]        *********  a_1 = 9.
           ooooooooo
------------------------------------
[8, 1]             *        a_2 = 1.
            *******o  a_1 - a_2 = 7.
            oooooooo
------------------------------------
[7, 2]            **        a_2 = 2.
             *****oo  a_1 - a_2 = 5.
             ooooooo
------------------------------------
[5, 4]          ****        a_2 = 4.
               *oooo  a_1 - a_2 = 1.
               ooooo
------------------------------------
a(9) = 4.
From _Gus Wiseman_, May 04 2019: (Start)
The a(1) = 1 through a(11) = 9 strict partitions with distinct differences (where the last part is taken to be 0) are the following (A = 10, B = 11). The Heinz numbers of these partitions are given by A325388.
  (1)  (2)  (3)  (4)   (5)   (6)   (7)   (8)   (9)   (A)    (B)
                 (31)  (32)  (51)  (43)  (53)  (54)  (64)   (65)
                       (41)        (52)  (62)  (72)  (73)   (74)
                                   (61)  (71)  (81)  (82)   (83)
                                                     (91)   (92)
                                                     (631)  (A1)
                                                            (632)
                                                            (641)
                                                            (731)
The a(1) = 1 through a(10) = 6 partitions covering an initial interval of positive integers with distinct multiplicities are the following. The Heinz numbers of these partitions are given by A325326.
  1  11  111  211   221    21111   2221     22211     22221      222211
              1111  2111   111111  22111    221111    2211111    322111
                    11111          211111   2111111   21111111   2221111
                                   1111111  11111111  111111111  22111111
                                                                 211111111
                                                                 1111111111
The a(1) = 1 through a(10) = 6 partitions whose multiplicities cover an initial interval of positive integers and are distinct are the following (A = 10). The Heinz numbers of these partitions are given by A325337.
  (1)  (2)  (3)  (4)    (5)    (6)    (7)    (8)    (9)    (A)
                 (211)  (221)  (411)  (322)  (332)  (441)  (433)
                        (311)         (331)  (422)  (522)  (442)
                                      (511)  (611)  (711)  (622)
                                                           (811)
                                                           (322111)
(End)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&UnsameQ@@Differences[Append[#,0]]&]],{n,30}] (* Gus Wiseman, May 04 2019 *)

A364345 Number of integer partitions of n without any three parts (a,b,c) (repeats allowed) satisfying a + b = c. A variation of sum-free partitions.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 7, 10, 13, 16, 21, 27, 34, 43, 54, 67, 83, 102, 122, 151, 182, 218, 258, 313, 366, 443, 513, 611, 713, 844, 975, 1149, 1325, 1554, 1780, 2079, 2381, 2761, 3145, 3647, 4134, 4767, 5408, 6200, 7014, 8035, 9048, 10320, 11639, 13207, 14836, 16850
Offset: 0

Views

Author

Gus Wiseman, Jul 20 2023

Keywords

Examples

			The a(1) = 1 through a(8) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (32)     (33)      (43)       (44)
                    (31)    (41)     (51)      (52)       (53)
                    (1111)  (311)    (222)     (61)       (62)
                            (11111)  (411)     (322)      (71)
                                     (3111)    (331)      (332)
                                     (111111)  (511)      (611)
                                               (4111)     (2222)
                                               (31111)    (3311)
                                               (1111111)  (5111)
                                                          (41111)
                                                          (311111)
                                                          (11111111)
		

Crossrefs

For subsets of {1..n} instead of partitions we have A007865 (sum-free sets), differences A288728.
Without re-using parts we have A236912, complement A237113.
Allowing the sum of any number of parts gives A237667 (cf. A108917).
The complement is counted by A363225, strict A363226, for subsets A093971.
The strict case is A364346.
These partitions have ranks A364347, complement A364348.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A323092 counts double-free partitions, ranks A320340.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Select[Tuples[Union[#],3],#[[1]]+#[[2]]==#[[3]]&]=={}&]],{n,0,30}]

A364349 Number of strict integer partitions of n containing the sum of no subset of the parts.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 5, 5, 8, 7, 11, 11, 15, 14, 21, 21, 28, 29, 38, 38, 51, 50, 65, 68, 82, 83, 108, 106, 130, 136, 163, 168, 206, 210, 248, 266, 307, 322, 381, 391, 457, 490, 553, 582, 675, 703, 797, 854, 952, 1000, 1147, 1187, 1331, 1437, 1564, 1656, 1869
Offset: 0

Views

Author

Gus Wiseman, Jul 29 2023

Keywords

Comments

First differs from A275972 in counting (7,5,3,1), which is not knapsack.

Examples

			The partition y = (7,5,3,1) has no subset with sum in y, so is counted under a(16).
The partition y = (15,8,4,2,1) has subset {1,2,4,8} with sum in y, so is not counted under a(31).
The a(1) = 1 through a(9) = 8 partitions:
  (1)  (2)  (3)    (4)    (5)    (6)    (7)      (8)      (9)
            (2,1)  (3,1)  (3,2)  (4,2)  (4,3)    (5,3)    (5,4)
                          (4,1)  (5,1)  (5,2)    (6,2)    (6,3)
                                        (6,1)    (7,1)    (7,2)
                                        (4,2,1)  (5,2,1)  (8,1)
                                                          (4,3,2)
                                                          (5,3,1)
                                                          (6,2,1)
		

Crossrefs

For subsets of {1..n} we have A151897, complement A364534.
The non-strict version is A237667, ranked by A364531.
The complement in strict partitions is counted by A364272.
The linear combination-free version is A364350.
The binary version is A364533, allowing re-used parts A364346.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A108917 counts knapsack partitions, strict A275972.
A236912 counts sum-free partitions (not re-using parts), complement A237113.
A323092 counts double-free partitions, ranks A320340.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Function[ptn,UnsameQ@@ptn&&Select[Subsets[ptn,{2,Length[ptn]}],MemberQ[ptn,Total[#]]&]=={}]]],{n,0,30}]

A364346 Number of strict integer partitions of n such that there is no ordered triple of parts (a,b,c) (repeats allowed) satisfying a + b = c. A variation of sum-free strict partitions.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 2, 4, 4, 5, 5, 8, 9, 11, 11, 16, 16, 20, 20, 25, 30, 34, 38, 42, 50, 58, 64, 73, 80, 90, 105, 114, 128, 148, 158, 180, 201, 220, 241, 277, 306, 333, 366, 404, 447, 497, 544, 592, 662, 708, 797, 861, 954, 1020, 1131, 1226, 1352, 1456, 1600
Offset: 0

Views

Author

Gus Wiseman, Jul 22 2023

Keywords

Examples

			The a(1) = 1 through a(14) = 11 partitions (A..E = 10..14):
  1   2   3   4    5    6    7    8    9     A    B     C     D     E
              31   32   51   43   53   54    64   65    75    76    86
                   41        52   62   72    73   74    93    85    95
                             61   71   81    82   83    A2    94    A4
                                       531   91   92    B1    A3    B3
                                                  A1    543   B2    C2
                                                  641   732   C1    D1
                                                  731   741   652   851
                                                        831   751   932
                                                              832   941
                                                              931   A31
		

Crossrefs

For subsets of {1..n} we have A007865 (sum-free sets), differences A288728.
For sums of any length > 1 we have A364349, non-strict A237667.
The complement is counted by A363226, non-strict A363225.
The non-strict version is A364345, ranks A364347, complement A364348.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A236912 counts sum-free partitions not re-using parts, complement A237113.
A323092 counts double-free partitions, ranks A320340.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Select[Tuples[#,3],#[[1]]+#[[2]]==#[[3]]&]=={}&]],{n,0,15}]
  • Python
    from collections import Counter
    from itertools import combinations_with_replacement
    from sympy.utilities.iterables import partitions
    def A364346(n): return sum(1 for p in partitions(n) if max(p.values(),default=1)==1 and not any(q[0]+q[1]==q[2] for q in combinations_with_replacement(sorted(Counter(p).elements()),3))) # Chai Wah Wu, Sep 20 2023

A363226 Number of strict integer partitions of n containing some three possibly equal parts (a,b,c) such that a + b = c. A variation of sum-full strict partitions.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 2, 1, 2, 3, 5, 4, 6, 7, 11, 11, 16, 18, 26, 29, 34, 42, 51, 62, 72, 84, 101, 119, 142, 166, 191, 226, 262, 300, 354, 405, 467, 540, 623, 705, 807, 927, 1060, 1206, 1369, 1551, 1760, 1998, 2248, 2556, 2861, 3236, 3628, 4100, 4587, 5152, 5756
Offset: 0

Views

Author

Gus Wiseman, Jul 19 2023

Keywords

Comments

Note that, by this definition, the partition (2,1) is sum-full, because (1,1,2) is a triple satisfying a + b = c.

Examples

			The a(3) = 1 through a(15) = 11 partitions (A=10, B=11, C=12):
  21  .  .  42   421  431  63   532   542   84    643   653   A5
            321       521  432  541   632   642   742   743   843
                           621  631   821   651   841   752   942
                                721   5321  921   A21   761   C21
                                4321        5421  5431  842   6432
                                            6321  6421  B21   6531
                                                  7321  5432  7431
                                                        6431  7521
                                                        6521  8421
                                                        7421  9321
                                                        8321  54321
		

Crossrefs

For subsets of {1..n} we have A093971 (sum-full sets), complement A007865.
The non-strict version is A363225, ranks A364348 (complement A364347).
The complement is counted by A364346, non-strict A364345.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A236912 counts sum-free partitions not re-using parts, complement A237113.
A323092 counts double-free partitions, ranks A320340.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Select[Tuples[#,3],#[[1]]+#[[2]]==#[[3]]&]!={}&]],{n,0,30}]
  • Python
    from itertools import combinations_with_replacement
    from collections import Counter
    from sympy.utilities.iterables import partitions
    def A363226(n): return sum(1 for p in partitions(n) if max(p.values(),default=0)==1 and any(q[0]+q[1]==q[2] for q in combinations_with_replacement(sorted(Counter(p).elements()),3))) # Chai Wah Wu, Sep 20 2023

Extensions

a(31)-a(56) from Chai Wah Wu, Sep 20 2023

A363260 Number of integer partitions of n with parts disjoint from first differences of parts, meaning no part is the difference of two consecutive parts.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 7, 10, 13, 17, 21, 28, 35, 46, 57, 70, 87, 110, 130, 165, 198, 238, 285, 349, 410, 498, 583, 702, 819, 983, 1136, 1353, 1570, 1852, 2137, 2520, 2898, 3390, 3891, 4540, 5191, 6028, 6889, 7951, 9082, 10450, 11884, 13650, 15508, 17728, 20113
Offset: 0

Views

Author

Gus Wiseman, Jul 19 2023

Keywords

Examples

			The a(1) = 1 through a(8) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (32)     (33)      (43)       (44)
                    (31)    (41)     (51)      (52)       (53)
                    (1111)  (311)    (222)     (61)       (62)
                            (11111)  (411)     (322)      (71)
                                     (3111)    (331)      (332)
                                     (111111)  (511)      (611)
                                               (4111)     (2222)
                                               (31111)    (3311)
                                               (1111111)  (5111)
                                                          (41111)
                                                          (311111)
                                                          (11111111)
		

Crossrefs

For length instead of differences we have A229816, strict A240861.
For all differences of pairs parts we have A364345.
For subsets of {1..n} instead of partitions we have A364463.
The strict case is A364464.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A323092 counts double-free partitions, ranks A320340.
A325325 counts partitions with distinct first-differences.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Intersection[#,-Differences[#]]=={}&]],{n,0,30}]
  • Python
    from collections import Counter
    from sympy.utilities.iterables import partitions
    def A363260(n): return sum(1 for s,p in map(lambda x: (x[0],tuple(sorted(Counter(x[1]).elements()))), partitions(n,size=True)) if set(p).isdisjoint({p[i+1]-p[i] for i in range(s-1)})) # Chai Wah Wu, Sep 26 2023

A364463 Number of subsets of {1..n} with elements disjoint from first differences of elements.

Original entry on oeis.org

1, 2, 3, 6, 10, 18, 30, 54, 92, 167, 290, 525, 935, 1704, 3082, 5664, 10386, 19249, 35701, 66702, 124855, 234969, 443174, 839254, 1592925, 3032757, 5786153, 11066413, 21204855, 40712426, 78294085, 150815154, 290922900, 561968268, 1086879052, 2104570243
Offset: 0

Views

Author

Gus Wiseman, Jul 27 2023

Keywords

Comments

In other words, no element is the difference of two consecutive elements.
From David A. Corneth, Aug 02 2023: (Start)
As subsets counted in a(n) are also counted in a(n+1) and {n+1} is a subset counted in a(n+1) but not a(n), a(n + 1) > a(n) for n >= 1.
As every subset counted in a(n + 1) that contains n+1 can be found from some subset counted in a(n) by appending n+1 and every subset counted in a(n) not containing n + 1 is counted in a(n + 1), a(n+1) <= 2*a(n). (End)

Examples

			The a(0) = 1 through a(5) = 18 subsets:
  {}  {}   {}   {}     {}       {}
      {1}  {1}  {1}    {1}      {1}
           {2}  {2}    {2}      {2}
                {3}    {3}      {3}
                {1,3}  {4}      {4}
                {2,3}  {1,3}    {5}
                       {1,4}    {1,3}
                       {2,3}    {1,4}
                       {3,4}    {1,5}
                       {2,3,4}  {2,3}
                                {2,5}
                                {3,4}
                                {3,5}
                                {4,5}
                                {1,3,5}
                                {2,3,4}
                                {3,4,5}
                                {2,3,4,5}
		

Crossrefs

For all differences of pairs of elements we have A007865.
For partitions instead of subsets we have A363260, strict A364464.
The complement is counted by A364466.
A000041 counts integer partitions, strict A000009.
A364465 counts subsets with distinct first differences, partitions A325325.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],Intersection[#,Differences[#]]=={}&]],{n,0,10}]
  • Python
    from itertools import combinations
    def A364463(n): return sum(1 for l in range(n+1) for c in combinations(range(1,n+1),l) if set(c).isdisjoint({c[i+1]-c[i] for i in range(l-1)})) # Chai Wah Wu, Sep 26 2023

Formula

a(n) < a(n + 1) <= 2 * a(n). - David A. Corneth, Aug 02 2023

Extensions

a(21)-a(29) from David A. Corneth, Aug 02 2023
a(30)-a(32) from Chai Wah Wu, Sep 26 2023
a(33)-a(35) from Chai Wah Wu, Sep 27 2023

A364464 Number of strict integer partitions of n where no part is the difference of two consecutive parts.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 2, 4, 4, 6, 5, 8, 9, 12, 13, 16, 16, 21, 23, 29, 34, 38, 41, 49, 57, 64, 73, 86, 95, 110, 120, 135, 160, 171, 197, 219, 247, 277, 312, 342, 386, 431, 476, 527, 598, 640, 727, 796, 893, 966, 1097, 1178, 1327, 1435, 1602, 1740, 1945, 2084, 2337
Offset: 0

Views

Author

Gus Wiseman, Jul 30 2023

Keywords

Comments

In other words, the parts are disjoint from the first differences.

Examples

			The strict partition y = (9,5,3,1) has differences (4,2,2), and these are disjoint from the parts, so y is counted under a(18).
The a(1) = 1 through a(9) = 6 strict partitions:
  (1)  (2)  (3)  (4)    (5)    (6)    (7)    (8)    (9)
                 (3,1)  (3,2)  (5,1)  (4,3)  (5,3)  (5,4)
                        (4,1)         (5,2)  (6,2)  (7,2)
                                      (6,1)  (7,1)  (8,1)
                                                    (4,3,2)
                                                    (5,3,1)
		

Crossrefs

For length instead of differences we have A240861, non-strict A229816.
For all differences of pairs of elements we have A364346, for subsets A007865.
For subsets instead of strict partitions we have A364463, complement A364466.
The non-strict version is A363260.
The complement is counted by A364536, non-strict A364467.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A120641 counts strict double-free partitions, non-strict A323092.
A320347 counts strict partitions w/ distinct differences, non-strict A325325.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Intersection[#,-Differences[#]]=={}&]],{n,0,15}]
  • Python
    from collections import Counter
    from sympy.utilities.iterables import partitions
    def A364464(n): return sum(1 for s,p in map(lambda x: (x[0],tuple(sorted(Counter(x[1]).elements()))), filter(lambda p:max(p[1].values(),default=1)==1,partitions(n,size=True))) if set(p).isdisjoint({p[i+1]-p[i] for i in range(s-1)})) # Chai Wah Wu, Sep 26 2023

A364466 Number of subsets of {1..n} where some element is a difference of two consecutive elements.

Original entry on oeis.org

0, 0, 1, 2, 6, 14, 34, 74, 164, 345, 734, 1523, 3161, 6488, 13302, 27104, 55150, 111823, 226443, 457586, 923721, 1862183, 3751130, 7549354, 15184291, 30521675, 61322711, 123151315, 247230601, 496158486, 995447739, 1996668494, 4004044396, 8027966324, 16092990132, 32255168125
Offset: 0

Views

Author

Gus Wiseman, Jul 31 2023

Keywords

Comments

In other words, the elements are not disjoint from their own first differences.

Examples

			The a(0) = 0 through a(5) = 14 subsets:
  .  .  {1,2}  {1,2}    {1,2}      {1,2}
               {1,2,3}  {2,4}      {2,4}
                        {1,2,3}    {1,2,3}
                        {1,2,4}    {1,2,4}
                        {1,3,4}    {1,2,5}
                        {1,2,3,4}  {1,3,4}
                                   {1,4,5}
                                   {2,3,5}
                                   {2,4,5}
                                   {1,2,3,4}
                                   {1,2,3,5}
                                   {1,2,4,5}
                                   {1,3,4,5}
                                   {1,2,3,4,5}
		

Crossrefs

For differences of all pairs we have A093971, complement A196723.
For partitions we have A363260, complement A364467.
The complement is counted by A364463.
For subset-sums instead of differences we have A364534, complement A325864.
For strict partitions we have A364536, complement A364464.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A050291 counts double-free subsets, complement A088808.
A108917 counts knapsack partitions, strict A275972.
A325325 counts partitions with all distinct differences, strict A320347.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],Intersection[#,Differences[#]]!={}&]],{n,0,10}]
  • Python
    from itertools import combinations
    def A364466(n): return sum(1 for l in range(n+1) for c in combinations(range(1,n+1),l) if not set(c).isdisjoint({c[i+1]-c[i] for i in range(l-1)})) # Chai Wah Wu, Sep 26 2023

Formula

a(n) = 2^n - A364463(n). - Chai Wah Wu, Sep 26 2023

Extensions

a(21)-a(32) from Chai Wah Wu, Sep 26 2023
a(33)-a(35) from Chai Wah Wu, Sep 27 2023
Showing 1-10 of 20 results. Next