A237113 Number of partitions of n such that some part is a sum of two other parts.
0, 0, 0, 0, 1, 1, 3, 3, 8, 10, 17, 22, 37, 47, 71, 91, 133, 170, 236, 301, 408, 515, 686, 860, 1119, 1401, 1798, 2232, 2829, 3495, 4378, 5381, 6682, 8165, 10060, 12238, 14958, 18116, 22018, 26533, 32071, 38490, 46265, 55318, 66193, 78843, 93949, 111503, 132326
Offset: 0
Keywords
Examples
Of the 11 partitions of 6, only these 3 include a part that is a sum of two other parts: [3,2,1], [2,2,1,1], [2,1,1,1,1]. Thus, a(6) = 3. From _Gus Wiseman_, Aug 09 2023: (Start) The a(0) = 0 through a(9) = 10 partitions: . . . . (211) (2111) (321) (3211) (422) (3321) (2211) (22111) (431) (4221) (21111) (211111) (3221) (4311) (4211) (5211) (22211) (32211) (32111) (42111) (221111) (222111) (2111111) (321111) (2211111) (21111111) (End)
Crossrefs
These partitions have ranks A364462.
Programs
-
Mathematica
z = 20; t = Map[Count[Map[Length[Cases[Map[Total[#] &, Subsets[#, {2}]], Apply[Alternatives, #]]] &, IntegerPartitions[#]], 0] &, Range[z]] (* A236912 *) u = PartitionsP[Range[z]] - t (* A237113, Peter J. C. Moses, Feb 03 2014 *) Table[Length[Select[IntegerPartitions[n],Intersection[#,Total/@Subsets[#,{2}]]!={}&]],{n,0,30}] (* Gus Wiseman, Aug 09 2023 *)
Extensions
a(0)=0 prepended by Alois P. Heinz, Sep 17 2023
Comments