cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A364531 Positive integers with no prime index equal to the sum of prime indices of any nonprime divisor.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 71, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2023

Keywords

Comments

First differs from A299702 (knapsack) in having 525: {2,3,3,4}.
First differs from A325778 in lacking 462: {1,2,4,5}.
These are the Heinz numbers of partitions whose parts are disjoint from their own non-singleton subset-sums.

Crossrefs

Partitions of this type are counted by A237667, strict A364349.
The binary version is A364462, complement A364461.
The complement is A364532, counted by A237668.
A000005 counts divisors, nonprime A033273, composite A055212.
A299701 counts distinct subset-sums of prime indices.
A299702 ranks knapsack partitions, counted by A108917, complement A299729.
A363260 counts partitions disjoint from differences, complement A364467.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Intersection[prix[#],Total/@Subsets[prix[#],{2,Length[prix[#]]}]]=={}&]

A364464 Number of strict integer partitions of n where no part is the difference of two consecutive parts.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 2, 4, 4, 6, 5, 8, 9, 12, 13, 16, 16, 21, 23, 29, 34, 38, 41, 49, 57, 64, 73, 86, 95, 110, 120, 135, 160, 171, 197, 219, 247, 277, 312, 342, 386, 431, 476, 527, 598, 640, 727, 796, 893, 966, 1097, 1178, 1327, 1435, 1602, 1740, 1945, 2084, 2337
Offset: 0

Views

Author

Gus Wiseman, Jul 30 2023

Keywords

Comments

In other words, the parts are disjoint from the first differences.

Examples

			The strict partition y = (9,5,3,1) has differences (4,2,2), and these are disjoint from the parts, so y is counted under a(18).
The a(1) = 1 through a(9) = 6 strict partitions:
  (1)  (2)  (3)  (4)    (5)    (6)    (7)    (8)    (9)
                 (3,1)  (3,2)  (5,1)  (4,3)  (5,3)  (5,4)
                        (4,1)         (5,2)  (6,2)  (7,2)
                                      (6,1)  (7,1)  (8,1)
                                                    (4,3,2)
                                                    (5,3,1)
		

Crossrefs

For length instead of differences we have A240861, non-strict A229816.
For all differences of pairs of elements we have A364346, for subsets A007865.
For subsets instead of strict partitions we have A364463, complement A364466.
The non-strict version is A363260.
The complement is counted by A364536, non-strict A364467.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A120641 counts strict double-free partitions, non-strict A323092.
A320347 counts strict partitions w/ distinct differences, non-strict A325325.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Intersection[#,-Differences[#]]=={}&]],{n,0,15}]
  • Python
    from collections import Counter
    from sympy.utilities.iterables import partitions
    def A364464(n): return sum(1 for s,p in map(lambda x: (x[0],tuple(sorted(Counter(x[1]).elements()))), filter(lambda p:max(p[1].values(),default=1)==1,partitions(n,size=True))) if set(p).isdisjoint({p[i+1]-p[i] for i in range(s-1)})) # Chai Wah Wu, Sep 26 2023

A364466 Number of subsets of {1..n} where some element is a difference of two consecutive elements.

Original entry on oeis.org

0, 0, 1, 2, 6, 14, 34, 74, 164, 345, 734, 1523, 3161, 6488, 13302, 27104, 55150, 111823, 226443, 457586, 923721, 1862183, 3751130, 7549354, 15184291, 30521675, 61322711, 123151315, 247230601, 496158486, 995447739, 1996668494, 4004044396, 8027966324, 16092990132, 32255168125
Offset: 0

Views

Author

Gus Wiseman, Jul 31 2023

Keywords

Comments

In other words, the elements are not disjoint from their own first differences.

Examples

			The a(0) = 0 through a(5) = 14 subsets:
  .  .  {1,2}  {1,2}    {1,2}      {1,2}
               {1,2,3}  {2,4}      {2,4}
                        {1,2,3}    {1,2,3}
                        {1,2,4}    {1,2,4}
                        {1,3,4}    {1,2,5}
                        {1,2,3,4}  {1,3,4}
                                   {1,4,5}
                                   {2,3,5}
                                   {2,4,5}
                                   {1,2,3,4}
                                   {1,2,3,5}
                                   {1,2,4,5}
                                   {1,3,4,5}
                                   {1,2,3,4,5}
		

Crossrefs

For differences of all pairs we have A093971, complement A196723.
For partitions we have A363260, complement A364467.
The complement is counted by A364463.
For subset-sums instead of differences we have A364534, complement A325864.
For strict partitions we have A364536, complement A364464.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A050291 counts double-free subsets, complement A088808.
A108917 counts knapsack partitions, strict A275972.
A325325 counts partitions with all distinct differences, strict A320347.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],Intersection[#,Differences[#]]!={}&]],{n,0,10}]
  • Python
    from itertools import combinations
    def A364466(n): return sum(1 for l in range(n+1) for c in combinations(range(1,n+1),l) if not set(c).isdisjoint({c[i+1]-c[i] for i in range(l-1)})) # Chai Wah Wu, Sep 26 2023

Formula

a(n) = 2^n - A364463(n). - Chai Wah Wu, Sep 26 2023

Extensions

a(21)-a(32) from Chai Wah Wu, Sep 26 2023
a(33)-a(35) from Chai Wah Wu, Sep 27 2023

A364536 Number of strict integer partitions of n where some part is a difference of two consecutive parts.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 2, 1, 2, 2, 5, 4, 6, 6, 9, 11, 16, 17, 23, 25, 30, 38, 48, 55, 65, 78, 92, 106, 127, 146, 176, 205, 230, 277, 315, 366, 421, 483, 552, 640, 727, 829, 950, 1083, 1218, 1408, 1577, 1794, 2017, 2298, 2561, 2919, 3255, 3685, 4116, 4638, 5163
Offset: 0

Views

Author

Gus Wiseman, Jul 31 2023

Keywords

Comments

In other words, strict partitions with parts not disjoint from first differences.

Examples

			The a(3) = 1 through a(15) = 11 partitions (A = 10, B = 11, C = 12):
  21  .  .  42   421  431  63   532   542   84    742   743   A5
            321       521  621  541   632   642   841   752   843
                                631   821   651   A21   761   942
                                721   5321  921   5431  842   C21
                                4321        5421  6421  B21   6432
                                            6321  7321  6431  6531
                                                        6521  7431
                                                        7421  7521
                                                        8321  8421
                                                              9321
                                                              54321
		

Crossrefs

For all differences of pairs we have A363226, non-strict A363225.
For all non-differences of pairs we have A364346, strict A364345.
The strict complement is counted by A364464, non-strict A363260.
For subsets of {1..n} we have A364466, complement A364463.
The non-strict case is A364467, ranks A364537.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A323092 counts double-free partitions, strict A120641.
A325325 counts partitions with distinct first-differences, strict A320347.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Intersection[#,-Differences[#]]!={}&]],{n,0,30}]
  • Python
    from collections import Counter
    from sympy.utilities.iterables import partitions
    def A364536(n): return sum(1 for s,p in map(lambda x: (x[0],tuple(sorted(Counter(x[1]).elements()))), filter(lambda p:max(p[1].values(),default=1)==1,partitions(n,size=True))) if not set(p).isdisjoint({p[i+1]-p[i] for i in range(s-1)})) # Chai Wah Wu, Sep 26 2023

A364537 Heinz numbers of integer partitions where some part is the difference of two consecutive parts.

Original entry on oeis.org

6, 12, 18, 21, 24, 30, 36, 42, 48, 54, 60, 63, 65, 66, 70, 72, 78, 84, 90, 96, 102, 108, 114, 120, 126, 130, 132, 133, 138, 140, 144, 147, 150, 154, 156, 162, 165, 168, 174, 180, 186, 189, 192, 195, 198, 204, 210, 216, 222, 228, 231, 234, 240, 246, 252, 258
Offset: 1

Views

Author

Gus Wiseman, Aug 02 2023

Keywords

Comments

In other words, partitions whose parts are not disjoint from their first differences.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The partition {3,4,5,7} with Heinz number 6545 has first differences (1,1,2) so is not in the sequence.
The terms together with their prime indices begin:
   6: {1,2}
  12: {1,1,2}
  18: {1,2,2}
  21: {2,4}
  24: {1,1,1,2}
  30: {1,2,3}
  36: {1,1,2,2}
  42: {1,2,4}
  48: {1,1,1,1,2}
  54: {1,2,2,2}
  60: {1,1,2,3}
  63: {2,2,4}
  65: {3,6}
  66: {1,2,5}
  70: {1,3,4}
  72: {1,1,1,2,2}
  78: {1,2,6}
  84: {1,1,2,4}
  90: {1,2,2,3}
  96: {1,1,1,1,1,2}
		

Crossrefs

For all differences of pairs the complement is A364347, counted by A364345.
For all differences of pairs we have A364348, counted by A363225.
Subsets of {1..n} of this type are counted by A364466, complement A364463.
These partitions are counted by A364467, complement A363260.
The strict case is A364536, complement A364464.
A050291 counts double-free subsets, complement A088808.
A323092 counts double-free partitions, ranks A320340.
A325325 counts partitions with distinct first differences.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Intersection[prix[#],Differences[prix[#]]]!={}&]

A364673 Number of (necessarily strict) integer partitions of n containing all of their own first differences.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 2, 1, 2, 2, 2, 5, 2, 2, 4, 2, 3, 6, 4, 4, 8, 4, 4, 10, 8, 7, 8, 13, 9, 15, 12, 13, 17, 20, 15, 31, 24, 27, 32, 33, 32, 50, 42, 45, 53, 61, 61, 85, 76, 86, 101, 108, 118, 137, 141, 147, 179, 184, 196, 222, 244, 257, 295, 324, 348, 380, 433
Offset: 0

Views

Author

Gus Wiseman, Aug 03 2023

Keywords

Examples

			The partition y = (12,6,3,2,1) has differences (6,3,1,1), and {1,3,6} is a subset of {1,2,3,6,12}, so y is counted under a(24).
The a(n) partitions for n = 1, 3, 6, 12, 15, 18, 21:
  (1)  (3)    (6)      (12)       (15)         (18)         (21)
       (2,1)  (4,2)    (8,4)      (10,5)       (12,6)       (14,7)
              (3,2,1)  (6,4,2)    (8,4,2,1)    (9,6,3)      (12,6,3)
                       (5,4,2,1)  (5,4,3,2,1)  (6,5,4,2,1)  (8,6,4,2,1)
                       (6,3,2,1)               (7,5,3,2,1)  (9,5,4,2,1)
                                               (8,4,3,2,1)  (9,6,3,2,1)
                                                            (10,5,3,2,1)
                                                            (6,5,4,3,2,1)
		

Crossrefs

Containing all differences: A007862.
Containing no differences: A364464, strict complement A364536.
Containing at least one difference: A364467, complement A363260.
For subsets of {1..n} we have A364671, complement A364672.
A non-strict version is A364674.
For submultisets instead of subsets we have A364675.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A236912 counts sum-free partitions w/o re-used parts, complement A237113.
A325325 counts partitions with distinct first differences.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&SubsetQ[#,-Differences[#]]&]],{n,0,30}]
  • Python
    from collections import Counter
    def A364673_list(maxn):
        count = Counter()
        for i in range(maxn//3):
            A,f,i = [[(i+1, )]],0,0
            while f == 0:
                A.append([])
                for j in A[i]:
                    for k in j:
                        x = j + (j[-1] + k, )
                        y = sum(x)
                        if y <= maxn:
                            A[i+1].append(x)
                            count.update({y})
                if len(A[i+1]) < 1: f += 1
                i += 1
        return [count[z]+1 for z in range(maxn+1)] # John Tyler Rascoe, Mar 09 2024

A364671 Number of subsets of {1..n} containing all of their own first differences.

Original entry on oeis.org

1, 2, 4, 6, 10, 14, 23, 34, 58, 96, 171, 302, 565, 1041, 1969, 3719, 7105, 13544, 25999, 49852, 95949, 184658, 356129, 687068, 1327540, 2566295, 4966449, 9617306, 18640098, 36150918, 70166056, 136272548, 264844111, 515036040, 1002211421, 1951345157, 3801569113
Offset: 0

Views

Author

Gus Wiseman, Aug 04 2023

Keywords

Examples

			The subset {1,2,4,5,10,14} has differences (1,2,1,5,4) so is counted under a(14).
The a(0) = 1 through a(5) = 14 subsets:
  {}  {}   {}     {}       {}         {}
      {1}  {1}    {1}      {1}        {1}
           {2}    {2}      {2}        {2}
           {1,2}  {3}      {3}        {3}
                  {1,2}    {4}        {4}
                  {1,2,3}  {1,2}      {5}
                           {2,4}      {1,2}
                           {1,2,3}    {2,4}
                           {1,2,4}    {1,2,3}
                           {1,2,3,4}  {1,2,4}
                                      {1,2,3,4}
                                      {1,2,3,5}
                                      {1,2,4,5}
                                      {1,2,3,4,5}
		

Crossrefs

For differences of all strict pairs we have A054519, for partitions A007862.
For "disjoint" instead of "subset" we have A364463, partitions A363260.
For "non-disjoint" we have A364466, partitions A364467 (strict A364536).
The complement is counted by A364672, partitions A364673, A364674, A364675.
First differences of terms are A364752, complement A364753.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], SubsetQ[#,Differences[#]]&]], {n,0,10}]

Extensions

More terms from Rémy Sigrist, Aug 06 2023

A364672 Number of subsets of {1..n} not containing all of their own first differences.

Original entry on oeis.org

0, 0, 0, 2, 6, 18, 41, 94, 198, 416, 853, 1746, 3531, 7151, 14415, 29049, 58431, 117528, 236145, 474436, 952627, 1912494, 3838175, 7701540, 15449676, 30988137, 62142415, 124600422, 249795358, 500719994, 1003575768, 2011211100, 4030123185, 8074898552, 16177657763, 32408393211, 64917907623
Offset: 0

Views

Author

Gus Wiseman, Aug 05 2023

Keywords

Examples

			The a(0) = 0 through a(5) = 18 subsets:
  .  .  .  {1,3}  {1,3}    {1,3}
           {2,3}  {1,4}    {1,4}
                  {2,3}    {1,5}
                  {3,4}    {2,3}
                  {1,3,4}  {2,5}
                  {2,3,4}  {3,4}
                           {3,5}
                           {4,5}
                           {1,2,5}
                           {1,3,4}
                           {1,3,5}
                           {1,4,5}
                           {2,3,4}
                           {2,3,5}
                           {2,4,5}
                           {3,4,5}
                           {1,3,4,5}
                           {2,3,4,5}
		

Crossrefs

For disjunction instead of containment we have A364463, partitions A363260.
For overlap we have A364466, partitions A364467 (strict A364536).
The complement is counted by A364671, partitions A364673, A364674, A364675.
First differences of terms are A364753, complement A364752.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],!SubsetQ[#,Differences[#]]&]],{n,0,10}]

Formula

a(n) = 2^n - A364671(n). - Andrew Howroyd, Jan 27 2024

Extensions

a(21) onwards (using A364671) added by Andrew Howroyd, Jan 27 2024

A364675 Number of integer partitions of n whose nonzero first differences are a submultiset of the parts.

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 7, 7, 10, 12, 15, 15, 26, 25, 35, 45, 55, 60, 86, 94, 126, 150, 186, 216, 288, 328, 407, 493, 610, 699, 896, 1030, 1269, 1500, 1816, 2130, 2620, 3029, 3654, 4300, 5165, 5984, 7222, 8368, 9976, 11637, 13771, 15960, 18978, 21896, 25815, 29915
Offset: 0

Views

Author

Gus Wiseman, Aug 04 2023

Keywords

Comments

Conjecture: For subsets of {1..n} instead of partitions of n we have A101925.
Conjecture: The strict version is A154402.

Examples

			The partition y = (3,2,1,1) has first differences (1,1,0), and (1,1) is a submultiset of y, so y is counted under a(7).
The a(1) = 1 through a(8) = 10 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (221)    (33)      (421)      (44)
             (111)  (211)   (2111)   (42)      (2221)     (422)
                    (1111)  (11111)  (222)     (3211)     (2222)
                                     (2211)    (22111)    (4211)
                                     (21111)   (211111)   (22211)
                                     (111111)  (1111111)  (32111)
                                                          (221111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

For subsets of {1..n} we appear to have A101925, A364671, A364672.
The strict case (no differences of 0) appears to be A154402.
Starting with the distinct parts gives A342337.
For disjoint multisets: A363260, subsets A364463, strict A364464.
For overlapping multisets: A364467, ranks A364537, strict A364536.
For subsets instead of submultisets we have A364673.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A236912 counts sum-free partitions, complement A237113.
A325325 counts partitions with distinct first differences.

Programs

  • Mathematica
    submultQ[cap_,fat_] := And@@Function[i,Count[fat,i] >= Count[cap,i]] /@ Union[List@@cap];
    Table[Length[Select[IntegerPartitions[n], submultQ[Differences[Union[#]],#]&]], {n,0,30}]

A364674 Number of integer partitions of n containing all of their own nonzero first differences.

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 8, 7, 11, 13, 17, 18, 32, 30, 44, 54, 70, 78, 114, 125, 171, 205, 257, 302, 408, 464, 592, 711, 892, 1042, 1330, 1543, 1925, 2279, 2787, 3291, 4061, 4727, 5753, 6792, 8197, 9583, 11593, 13505, 16198, 18965, 22548, 26290, 31340, 36363, 43046
Offset: 0

Views

Author

Gus Wiseman, Aug 04 2023

Keywords

Examples

			The partition (10,5,3,3,2,1) has nonzero differences (5,2,1,1) so is counted under a(24).
The a(1) = 1 through a(9) = 13 partitions:
  (1) (2)  (3)   (4)    (5)     (6)      (7)       (8)        (9)
      (11) (21)  (22)   (221)   (33)     (421)     (44)       (63)
           (111) (211)  (2111)  (42)     (2221)    (422)      (333)
                 (1111) (11111) (222)    (3211)    (2222)     (3321)
                                (321)    (22111)   (3221)     (4221)
                                (2211)   (211111)  (4211)     (22221)
                                (21111)  (1111111) (22211)    (32211)
                                (111111)           (32111)    (42111)
                                                   (221111)   (222111)
                                                   (2111111)  (321111)
                                                   (11111111) (2211111)
                                                              (21111111)
                                                              (111111111)
		

Crossrefs

For no differences we have A363260, subsets A364463, strict A364464.
For at least one difference we have A364467, ranks A364537, strict A364536.
For subsets instead of partitions we have A364671, complement A364672.
The strict case (no differences of 0) is counted by A364673.
For submultisets instead of subsets we have A364675.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A236912 counts sum-free partitions w/o re-used parts, complement A237113.
A325325 counts partitions with distinct first differences.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], SubsetQ[#,Differences[Union[#]]]&]],{n,0,30}]
Showing 1-10 of 11 results. Next