A320374 Number of parts in all partitions of n with largest multiplicity four.
4, 0, 5, 5, 15, 16, 30, 36, 60, 75, 116, 149, 217, 273, 386, 491, 664, 839, 1116, 1399, 1829, 2292, 2937, 3656, 4638, 5729, 7187, 8840, 10984, 13430, 16558, 20138, 24657, 29846, 36288, 43736, 52880, 63430, 76289, 91159, 109106, 129841, 154724, 183452, 217727
Offset: 4
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 4..1000
Crossrefs
Column k=4 of A213177.
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, [1, 0], `if`(i<1, 0, add((l->l+[0, l[1]*j])(b(n-i*j, i-1, k)), j=0..min(n/i, k)))) end: a:= n-> (k-> (b(n$2, k)-b(n$2, k-1))[2])(4): seq(a(n), n=4..50);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0, {1, 0}, If[i < 1, {0, 0}, Sum[Function[l, {0, l[[1]] j} + l][b[n - i j, i - 1, k]], {j, 0, Min[n/i, k]}]]]; a[n_] := With[{k = 4}, (b[n, n, k] - b[n, n, k - 1])[[2]]]; a /@ Range[4, 60] (* Jean-François Alcover, Dec 13 2020, after Alois P. Heinz *)
Formula
a(n) ~ 3^(1/4) * log(5) * exp(2*Pi*sqrt(2*n/15)) / (2^(5/4) * 5^(1/4) * Pi * n^(1/4)). - Vaclav Kotesovec, Oct 25 2018