A320381 Number of parts in all partitions of 2n with largest multiplicity n.
0, 1, 5, 7, 15, 18, 38, 43, 81, 101, 164, 206, 332, 405, 613, 783, 1115, 1410, 1984, 2483, 3402, 4281, 5697, 7147, 9417, 11702, 15167, 18861, 24093, 29782, 37745, 46377, 58206, 71325, 88665, 108194, 133675, 162278, 199154, 241040, 293934, 354306, 429968, 516256
Offset: 0
Keywords
Examples
a(2) = 5 = 3 + 2: [2,1,1], [2,2].
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..788 (terms 0..400 from Alois P. Heinz)
Crossrefs
Cf. A213177.
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, [1, 0], `if`(i<1, 0, add((l-> [0, l[1]*j]+l)(b(n-i*j, i-1, k)), j=0..min(n/i, k)))) end: a:= n-> (b(2*n$2, n)-b(2*n$2, n-1))[2]: seq(a(n), n=0..45);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n==0, {1, 0}, If[i<1, {0, 0}, Sum[b[n - i*j, i - 1, k] /. l_List :> {l[[1]], l[[2]] + l[[1]]*j}, {j, 0, Min[n/i, k]}]]]; a[n_] := (b[2n, 2n, n] - b[2n, 2n, n-1])[[2]]; a /@ Range[0, 45] (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz *)
Formula
a(n) = A213177(2n,n).