cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320381 Number of parts in all partitions of 2n with largest multiplicity n.

Original entry on oeis.org

0, 1, 5, 7, 15, 18, 38, 43, 81, 101, 164, 206, 332, 405, 613, 783, 1115, 1410, 1984, 2483, 3402, 4281, 5697, 7147, 9417, 11702, 15167, 18861, 24093, 29782, 37745, 46377, 58206, 71325, 88665, 108194, 133675, 162278, 199154, 241040, 293934, 354306, 429968, 516256
Offset: 0

Views

Author

Alois P. Heinz, Oct 11 2018

Keywords

Examples

			a(2) = 5 = 3 + 2: [2,1,1], [2,2].
		

Crossrefs

Cf. A213177.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, [1, 0], `if`(i<1, 0,
          add((l-> [0, l[1]*j]+l)(b(n-i*j, i-1, k)), j=0..min(n/i, k))))
        end:
    a:= n-> (b(2*n$2, n)-b(2*n$2, n-1))[2]:
    seq(a(n), n=0..45);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n==0, {1, 0}, If[i<1, {0, 0}, Sum[b[n - i*j, i - 1, k] /. l_List :> {l[[1]], l[[2]] + l[[1]]*j}, {j, 0, Min[n/i, k]}]]];
    a[n_] := (b[2n, 2n, n] - b[2n, 2n, n-1])[[2]];
    a /@ Range[0, 45] (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz *)

Formula

a(n) = A213177(2n,n).