A320393 First members of the Cunningham chains of the first kind whose length is a prime.
2, 3, 11, 23, 29, 41, 53, 83, 113, 131, 173, 179, 191, 233, 239, 251, 281, 293, 419, 431, 443, 491, 593, 641, 653, 659, 683, 719, 743, 761, 809, 911, 953, 1013, 1019, 1031, 1049, 1103, 1223, 1289, 1439, 1451, 1481, 1499, 1511, 1559, 1583, 1601, 1733, 1811, 1889, 1901, 1931, 1973, 2003, 2039, 2063, 2069, 2129, 2141
Offset: 1
Keywords
Examples
41 is an item as it generates the Cunningham chain (41, 83, 167), of length 3, that is prime.
Programs
-
Mathematica
aQ[n_] := PrimeQ[Length[NestWhileList[2#+1&, n, PrimeQ]] - 1]; Select[Range[2200], aQ] (* Amiram Eldar, Dec 11 2018 *)
-
Python
from sympy.ntheory import isprime def cunningham_chain(p,t): #it returns the cunningham chain generated by p of type t (1 or 2) if not(isprime(p)): raise Exception("Invalid starting number! It must be prime") if t!=1 and t!=2: raise Exception("Invalid type! It must be 1 or 2") elif t==1: k=t else: k=-1 cunn_ch=[] cunn_ch.append(p) while isprime(2*p+k): p=2*p+k cunn_ch.append(p) return(cunn_ch) from sympy import prime n=350 r="" for i in range(1,n): cunn_ch=(cunningham_chain(prime(i),1)) lcunn_ch=len(cunn_ch) if isprime(lcunn_ch): r += ","+str(prime(i)) print(r[1:])