cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320393 First members of the Cunningham chains of the first kind whose length is a prime.

Original entry on oeis.org

2, 3, 11, 23, 29, 41, 53, 83, 113, 131, 173, 179, 191, 233, 239, 251, 281, 293, 419, 431, 443, 491, 593, 641, 653, 659, 683, 719, 743, 761, 809, 911, 953, 1013, 1019, 1031, 1049, 1103, 1223, 1289, 1439, 1451, 1481, 1499, 1511, 1559, 1583, 1601, 1733, 1811, 1889, 1901, 1931, 1973, 2003, 2039, 2063, 2069, 2129, 2141
Offset: 1

Views

Author

Pierandrea Formusa, Dec 10 2018

Keywords

Examples

			41 is an item as it generates the Cunningham chain (41, 83, 167), of length 3, that is prime.
		

Crossrefs

Programs

  • Mathematica
    aQ[n_] := PrimeQ[Length[NestWhileList[2#+1&, n, PrimeQ]] - 1]; Select[Range[2200], aQ] (* Amiram Eldar, Dec 11 2018 *)
  • Python
    from sympy.ntheory import isprime
    def cunningham_chain(p,t):
        #it returns the cunningham chain generated by p of type t (1 or 2)
        if not(isprime(p)):
            raise Exception("Invalid starting number! It must be prime")
        if t!=1 and t!=2:
            raise Exception("Invalid type! It must be 1 or 2")
        elif t==1: k=t
        else: k=-1
        cunn_ch=[]
        cunn_ch.append(p)
        while isprime(2*p+k):
            p=2*p+k
            cunn_ch.append(p)
        return(cunn_ch)
    from sympy import prime
    n=350
    r=""
    for i in range(1,n):
        cunn_ch=(cunningham_chain(prime(i),1))
        lcunn_ch=len(cunn_ch)
        if isprime(lcunn_ch):
           r += ","+str(prime(i))
    print(r[1:])