A320395 Number of non-isomorphic 3-uniform multiset systems over {1,...,n}.
1, 2, 10, 208, 45960, 287800704, 100103176111616, 3837878984050795692032, 32966965900633495618246298767360, 128880214965936601447070466061615999984402432, 464339910355487357558396669850788946402420533504952464572416
Offset: 0
Keywords
Examples
Non-isomorphic representatives of the a(2) = 10 multiset systems: {} {{111}} {{122}} {{111}{222}} {{112}{122}} {{112}{222}} {{122}{222}} {{111}{122}{222}} {{112}{122}{222}} {{111}{112}{122}{222}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..25
Crossrefs
Programs
-
Mathematica
Table[Sum[2^PermutationCycles[Ordering[Map[Sort,Select[Tuples[Range[n],3],OrderedQ]/.Rule@@@Table[{i,prm[[i]]},{i,n}],{1}]],Length],{prm,Permutations[Range[n]]}]/n!,{n,6}]
-
PARI
permcount(v)={my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} rep(typ)={my(L=List(), k=0); for(i=1, #typ, k+=typ[i]; listput(L, k); while(#L
0, u=vecsort(apply(f, u)); d=lex(u, v)); !d} Q(perm)={my(t=0); forsubset([#perm+2, 3], v, t += can([v[1],v[2]-1,v[3]-2], t->perm[t])); t} a(n)={my(s=0); forpart(p=n, s += permcount(p)*2^Q(rep(p))); s/n!} \\ Andrew Howroyd, Aug 26 2019
Extensions
Terms a(9) and beyond from Andrew Howroyd, Aug 26 2019