cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A000665 Number of 3-uniform hypergraphs on n unlabeled nodes, or equivalently number of relations with 3 arguments on n nodes.

Original entry on oeis.org

1, 1, 1, 2, 5, 34, 2136, 7013320, 1788782616656, 53304527811667897248, 366299663432194332594005123072, 1171638318502989084030402509596875836036608, 3517726593606526072882013063011594224625680712384971214848
Offset: 0

Views

Author

Keywords

Comments

The Qian reference has one incorrect term. The formula given in corollary 2.6 also contains a minor error. The second summation needs to be over p_i*p_j*p_h/lcm(p_i, p_j, p_h) rather than gcd(p_i, p_j, p_h)^2. - Andrew Howroyd, Dec 11 2018

Examples

			From _Gus Wiseman_, Dec 13 2018: (Start)
Non-isomorphic representatives of the a(5) = 34 hypergraphs:
  {}
  {{123}}
  {{125}{345}}
  {{134}{234}}
  {{123}{245}{345}}
  {{124}{134}{234}}
  {{135}{245}{345}}
  {{145}{245}{345}}
  {{123}{124}{134}{234}}
  {{123}{145}{245}{345}}
  {{124}{135}{245}{345}}
  {{125}{135}{245}{345}}
  {{134}{235}{245}{345}}
  {{145}{235}{245}{345}}
  {{123}{124}{135}{245}{345}}
  {{123}{145}{235}{245}{345}}
  {{124}{134}{235}{245}{345}}
  {{134}{145}{235}{245}{345}}
  {{135}{145}{235}{245}{345}}
  {{145}{234}{235}{245}{345}}
  {{123}{124}{134}{235}{245}{345}}
  {{123}{134}{145}{235}{245}{345}}
  {{123}{145}{234}{235}{245}{345}}
  {{124}{135}{145}{235}{245}{345}}
  {{125}{135}{145}{235}{245}{345}}
  {{135}{145}{234}{235}{245}{345}}
  {{123}{124}{135}{145}{235}{245}{345}}
  {{124}{135}{145}{234}{235}{245}{345}}
  {{125}{135}{145}{234}{235}{245}{345}}
  {{134}{135}{145}{234}{235}{245}{345}}
  {{123}{124}{135}{145}{234}{235}{245}{345}}
  {{125}{134}{135}{145}{234}{235}{245}{345}}
  {{124}{125}{134}{135}{145}{234}{235}{245}{345}}
  {{123}{124}{125}{134}{135}{145}{234}{235}{245}{345}}
(End)
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 231.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A092337. Spanning 3-uniform hypergraphs are counted by A322451.
Column k=3 of A309858.

Programs

  • Mathematica
    (* about 85 seconds on a laptop computer *)
    Needs["Combinatorica`"];Table[A = Subsets[Range[n],{3}];CycleIndex[Replace[Map[Sort,System`PermutationReplace[A, SymmetricGroup[n]], {2}],Table[A[[i]] -> i, {i, 1, Length[A]}], 2], s] /. Table[s[i] -> 2, {i, 1, Binomial[n, 3]}], {n, 1, 8}] (* Geoffrey Critzer, Oct 28 2015 *)
    Table[Sum[2^PermutationCycles[Ordering[Map[Sort,Subsets[Range[n],{3}]/.Rule@@@Table[{i,prm[[i]]},{i,n}],{1}]],Length],{prm,Permutations[Range[n]]}]/n!,{n,8}] (* Gus Wiseman, Dec 13 2018 *)
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[p_] := Sum[Ceiling[(p[[i]] - 1)*((p[[i]] - 2)/6)], {i, 1, Length[p]}] + Sum[Sum[c = p[[i]]; d = p[[j]]; GCD[c, d]*(c + d - 2 + Mod[(c - d)/GCD[c, d], 2])/2 + Sum[c*d*p[[k]]/LCM[c, d, p[[k]]], {k, 1, j - 1}], {j, 1, i - 1}], {i, 2, Length[p]}];
    a[n_] := Module[{s = 0}, Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!];
    a /@ Range[0, 12] (* Jean-François Alcover, Jan 08 2021, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(p)={sum(i=1, #p, ceil((p[i]-1)*(p[i]-2)/6)) + sum(i=2, #p, sum(j=1, i-1, my(c=p[i], d=p[j]); gcd(c,d)*(c + d - 2 + (c-d)/gcd(c,d)%2)/2 + sum(k=1, j-1, c*d*p[k]/lcm(lcm(c,d), p[k]))))}
    a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*2^edges(p)); s/n!} \\ Andrew Howroyd, Dec 11 2018

Extensions

Corrected and extended by Vladeta Jovovic
a(0)=1 prepended and a(12) from Andrew Howroyd, Dec 11 2018

A323293 Number of 3-uniform hypergraphs on n labeled vertices where no two edges have two vertices in common.

Original entry on oeis.org

1, 1, 1, 2, 5, 26, 271, 5596, 231577, 21286940, 4392750641, 2100400533176
Offset: 0

Views

Author

Gus Wiseman, Jan 10 2019

Keywords

Examples

			The a(5) = 26 hypergraphs:
  {}
  {{1,2,3}}
  {{1,2,4}}
  {{1,2,5}}
  {{1,3,4}}
  {{1,3,5}}
  {{1,4,5}}
  {{2,3,4}}
  {{2,3,5}}
  {{2,4,5}}
  {{3,4,5}}
  {{1,2,3},{1,4,5}}
  {{1,2,3},{2,4,5}}
  {{1,2,3},{3,4,5}}
  {{1,2,4},{1,3,5}}
  {{1,2,4},{2,3,5}}
  {{1,2,4},{3,4,5}}
  {{1,2,5},{1,3,4}}
  {{1,2,5},{2,3,4}}
  {{1,2,5},{3,4,5}}
  {{1,3,4},{2,3,5}}
  {{1,3,4},{2,4,5}}
  {{1,3,5},{2,3,4}}
  {{1,3,5},{2,4,5}}
  {{1,4,5},{2,3,4}}
  {{1,4,5},{2,3,5}}
Non-isomorphic representatives of the 6 unlabeled 3-uniform hypertrees spanning 6 vertices where no two edges have two vertices in common, and their multiplicities in the labeled case which add up to a(6) = 271:
    1 X {}
   20 X {{1,2,3}}
   90 X {{1,2,5},{3,4,5}}
   10 X {{1,2,3},{4,5,6}}
  120 X {{1,3,5},{2,3,6},{4,5,6}}
   30 X {{1,2,4},{1,3,5},{2,3,6},{4,5,6}}
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[stableSets[Subsets[Range[n],{3}],Length[Intersection[#1,#2]]>1&]],{n,8}]

Extensions

a(9) from Andrew Howroyd, Aug 14 2019
a(10) and a(11) (using A287232) from Joerg Arndt, Oct 12 2023

A319540 Number of unlabeled 3-uniform hypergraphs spanning n vertices such that every pair of vertices appears together in some block.

Original entry on oeis.org

1, 1, 0, 1, 2, 14, 964, 3908438
Offset: 0

Views

Author

Gus Wiseman, Jan 09 2019

Keywords

Examples

			Non-isomorphic representatives of the a(5) = 14 hypergraphs:
              {{123}{145}{245}{345}}
            {{123}{124}{135}{245}{345}}
            {{123}{145}{235}{245}{345}}
          {{123}{134}{145}{235}{245}{345}}
          {{123}{145}{234}{235}{245}{345}}
          {{124}{135}{145}{235}{245}{345}}
          {{125}{135}{145}{235}{245}{345}}
        {{123}{124}{135}{145}{235}{245}{345}}
        {{124}{135}{145}{234}{235}{245}{345}}
        {{125}{135}{145}{234}{235}{245}{345}}
      {{123}{124}{135}{145}{234}{235}{245}{345}}
      {{125}{134}{135}{145}{234}{235}{245}{345}}
    {{124}{125}{134}{135}{145}{234}{235}{245}{345}}
  {{123}{124}{125}{134}{135}{145}{234}{235}{245}{345}}
		

Crossrefs

Extensions

a(6)-a(7) from Andrew Howroyd, Aug 17 2019

A323292 Number of 3-uniform hypergraphs spanning n labeled vertices where no two edges have two vertices in common.

Original entry on oeis.org

1, 0, 0, 1, 0, 15, 160, 4125, 193200, 19384225
Offset: 0

Views

Author

Gus Wiseman, Jan 10 2019

Keywords

Examples

			The a(5) = 15 hypergraphs:
  {{1,2,3},{1,4,5}}
  {{1,2,3},{2,4,5}}
  {{1,2,3},{3,4,5}}
  {{1,2,4},{1,3,5}}
  {{1,2,4},{2,3,5}}
  {{1,2,4},{3,4,5}}
  {{1,2,5},{1,3,4}}
  {{1,2,5},{2,3,4}}
  {{1,2,5},{3,4,5}}
  {{1,3,4},{2,3,5}}
  {{1,3,4},{2,4,5}}
  {{1,3,5},{2,3,4}}
  {{1,3,5},{2,4,5}}
  {{1,4,5},{2,3,4}}
  {{1,4,5},{2,3,5}}
Non-isomorphic representatives of the 3 unlabeled 3-uniform hypergraphs spanning 6 vertices where no two edges have two vertices in common, and their multiplicities in the labeled case which add up to a(6) = 160:
   10 X {{1,2,3},{4,5,6}}
  120 X {{1,3,5},{2,3,6},{4,5,6}}
   30 X {{1,2,4},{1,3,5},{2,3,6},{4,5,6}}
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[Select[stableSets[Subsets[Range[n],{3}],Length[Intersection[#1,#2]]>=2&],Union@@#==Range[n]&]],{n,6}]

Formula

Inverse binomial transform of A323293. - Andrew Howroyd, Aug 14 2019

Extensions

a(9) from Andrew Howroyd, Aug 14 2019

A323294 Number of 3-uniform hypergraphs spanning n labeled vertices where every two edges have two vertices in common.

Original entry on oeis.org

1, 0, 0, 1, 11, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780, 820, 861, 903, 946, 990, 1035, 1081, 1128, 1176, 1225, 1275, 1326, 1378, 1431
Offset: 0

Views

Author

Gus Wiseman, Jan 10 2019

Keywords

Examples

			The a(4) = 11 hypergraphs:
  {{1,2,3},{1,2,4}}
  {{1,2,3},{1,3,4}}
  {{1,2,3},{2,3,4}}
  {{1,2,4},{1,3,4}}
  {{1,2,4},{2,3,4}}
  {{1,3,4},{2,3,4}}
  {{1,2,3},{1,2,4},{1,3,4}}
  {{1,2,3},{1,2,4},{2,3,4}}
  {{1,2,3},{1,3,4},{2,3,4}}
  {{1,2,4},{1,3,4},{2,3,4}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[Select[stableSets[Subsets[Range[n],{3}],Length[Intersection[#1,#2]]<=1&],Union@@#==Range[n]&]],{n,10}]
  • PARI
    seq(n)={Vec(serlaplace(1 - x^2/2 - x^3/3 + 5*x^4/24 + x^2*exp(x + O(x^(n-1)))/2))} \\ Andrew Howroyd, Aug 18 2019

Formula

a(n) = binomial(n,2) for n >= 5. - Gus Wiseman, Jan 16 2019
Binomial transform is A289837. - Gus Wiseman, Jan 16 2019
a(n) = A000217(n-1) for n >= 5. - Alois P. Heinz, Jan 24 2019
E.g.f.: 1 - x^2/2 - x^3/3 + 5*x^4/24 + x^2*exp(x)/2. - Andrew Howroyd, Aug 18 2019

A003190 Number of connected 2-plexes.

Original entry on oeis.org

1, 0, 1, 3, 29, 2101, 7011181, 1788775603301, 53304526022885278403, 366299663378889804782330207902, 1171638318502622784366970315262493034215728, 3517726593606524901243694560022510194169866584119717555335
Offset: 1

Views

Author

Keywords

Comments

The Palmer reference (incorrectly) has a(7)=7011349, a(8)=1788775603133, a(9)=53304526022885278659. - Sean A. Irvine, Mar 05 2015
Also connected 3-uniform hypergraphs on n vertices. - Gus Wiseman, Feb 23 2019

Examples

			From _Gus Wiseman_, Feb 23 2019: (Start)
Non-isomorphic representatives of the a(5) = 29 2-plexes:
  {{125}{345}}
  {{123}{245}{345}}
  {{135}{245}{345}}
  {{145}{245}{345}}
  {{123}{145}{245}{345}}
  {{124}{135}{245}{345}}
  {{125}{135}{245}{345}}
  {{134}{235}{245}{345}}
  {{145}{235}{245}{345}}
  {{123}{124}{135}{245}{345}}
  {{123}{145}{235}{245}{345}}
  {{124}{134}{235}{245}{345}}
  {{134}{145}{235}{245}{345}}
  {{135}{145}{235}{245}{345}}
  {{145}{234}{235}{245}{345}}
  {{123}{124}{134}{235}{245}{345}}
  {{123}{134}{145}{235}{245}{345}}
  {{123}{145}{234}{235}{245}{345}}
  {{124}{135}{145}{235}{245}{345}}
  {{125}{135}{145}{235}{245}{345}}
  {{135}{145}{234}{235}{245}{345}}
  {{123}{124}{135}{145}{235}{245}{345}}
  {{124}{135}{145}{234}{235}{245}{345}}
  {{125}{135}{145}{234}{235}{245}{345}}
  {{134}{135}{145}{234}{235}{245}{345}}
  {{123}{124}{135}{145}{234}{235}{245}{345}}
  {{125}{134}{135}{145}{234}{235}{245}{345}}
  {{124}{125}{134}{135}{145}{234}{235}{245}{345}}
  {{123}{124}{125}{134}{135}{145}{234}{235}{245}{345}}
(End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=3 of A301924.
Cf. A000665 (unlabeled 3-uniform), A025035, A125791 (labeled 3-uniform), A289837, A301922, A302374 (labeled 3-uniform spanning), A302394, A306017, A319540, A320395, A322451 (unlabeled 3-uniform spanning), A323292-A323299.

Formula

Inverse Euler transform of A000665. - Sean A. Irvine, Mar 05 2015

Extensions

a(7)-a(9) corrected and extended by Sean A. Irvine, Mar 05 2015

A320446 Covers of triangles by tetrahedra: number of labeled 4-uniform hypergraphs spanning n vertices such that every three vertices appear together in some edge.

Original entry on oeis.org

1, 1, 1, 0, 1, 6, 5789
Offset: 0

Views

Author

Gus Wiseman, Jan 10 2019

Keywords

Examples

			The a(5) = 6 hypergraphs:
  {{1234},{1235},{1245},{1345}}
  {{1234},{1235},{1245},{2345}}
  {{1234},{1235},{1345},{2345}}
  {{1234},{1245},{1345},{2345}}
  {{1235},{1245},{1345},{2345}}
  {{1234},{1235},{1245},{1345},{2345}}
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{4}]],Length[Union@@(Subsets[#,{3}]&/@#)]==Binomial[n,3]&]],{n,6}]
Showing 1-7 of 7 results.