cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320423 Number of set partitions of {1,...,n} where each block's elements are pairwise coprime.

Original entry on oeis.org

1, 1, 1, 2, 2, 8, 4, 28, 18, 120, 60, 888, 252, 5220, 1860, 22224, 9552, 311088, 59616, 2473056, 565920, 13627008, 4051872, 235039392, 33805440, 1932037632, 465239808, 20604487680, 4294865664, 386228795904, 35413136640
Offset: 0

Views

Author

Gus Wiseman, Jan 08 2019

Keywords

Comments

Two or more numbers are pairwise coprime if no pair of them has a common divisor > 1. A single number is not considered to be pairwise coprime unless it is equal to 1.

Examples

			The a(5) = 8 set partitions:
  {{1},{2,3},{4,5}}
  {{1},{2,5},{3,4}}
   {{1,2},{3,4,5}}
   {{1,4},{2,3,5}}
   {{1,2,3},{4,5}}
   {{1,2,5},{3,4}}
   {{1,3,4},{2,5}}
   {{1,4,5},{2,3}}
		

Crossrefs

Programs

  • Mathematica
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    Table[Length[spsu[Select[Subsets[Range[n]],CoprimeQ@@#&],Range[n]]],{n,10}]

Extensions

a(17)-a(18) from Alois P. Heinz, Jan 17 2019
a(19)-a(30) from Christian Sievers, Nov 28 2024