A320424 Number of set partitions of {1,...,n} where each block's elements are relatively prime.
1, 1, 1, 2, 4, 13, 31, 140, 480, 2306, 9179, 58209, 249205, 1802970, 9463155, 63813439, 389176317, 3415876088, 20506436732, 195865505549, 1353967583125, 12006363947433, 93067012435816, 1019489483393439, 7779097711766093, 86684751695545733, 766357409555622203
Offset: 0
Keywords
Examples
The a(5) = 13 set partitions: {{1},{2,3},{4,5}} {{1},{2,5},{3,4}} {{1},{2,3,4,5}} {{1,2},{3,4,5}} {{1,3},{2,4,5}} {{1,4},{2,3,5}} {{1,5},{2,3,4}} {{1,2,3},{4,5}} {{1,2,4},{3,5}} {{1,2,5},{3,4}} {{1,3,4},{2,5}} {{1,4,5},{2,3}} {{1,2,3,4,5}} For example, {{1},{2,5},{3,4}} belongs to the list because {1} is relatively prime, {2,5} is relatively prime, and {3,4} is relatively prime. On the other hand, {{1},{2,4},{3,5}} is missing from the list because {2,4} is not relatively prime.
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; Table[Length[Select[sps[Range[n]],And@@(GCD@@#==1&/@#)&]],{n,10}]
-
PARI
lista(nn) = my(m, t=Mat([[], 1]), v, w, z); print1(1); for(n=1, nn, m=Map(); for(i=1, #t~, v=t[i, 1]; if(n-2+sum(j=1, #v, v[j]>1)
Jinyuan Wang, Mar 02 2025
Extensions
a(13)-a(23) from Alois P. Heinz, Jan 08 2019
a(24)-a(26) from Jinyuan Wang, Mar 02 2025
Comments