cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320438 Irregular triangle read by rows where T(n,k) is the number of set partitions of {1,...,n} with all block-sums equal to d, where d is the k-th divisor of n*(n+1)/2 that is >= n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 3, 7, 1, 1, 9, 1, 1, 1, 1, 43, 35, 1, 1, 102, 62, 1, 1, 1, 1, 68, 595, 1, 1, 17, 187, 871, 1480, 361, 1, 1, 2650, 657, 1, 1, 9294, 1, 1, 23728, 1, 1, 27763, 4110, 1, 1, 1850, 25035, 108516, 157991, 7636, 1, 1, 11421, 411474, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 08 2019

Keywords

Examples

			Triangle begins:
    1
    1
    1    1
    1    1
    1    1
    1    1
    1    4    1
    1    3    7    1
    1    9    1
    1    1
    1   43   35    1
    1  102   62    1
    1    1
    1   68  595    1
    1   17  187  871 1480  361    1
    1 2650  657    1
Row 8 counts the following set partitions:
  {{18}{27}{36}{45}}  {{1236}{48}{57}}  {{12348}{567}}  {{12345678}}
                      {{138}{246}{57}}  {{12357}{468}}
                      {{156}{237}{48}}  {{12456}{378}}
                                        {{1278}{3456}}
                                        {{1368}{2457}}
                                        {{1458}{2367}}
                                        {{1467}{2358}}
		

Crossrefs

Programs

  • Mathematica
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    Table[Length[spsu[Select[Subsets[Range[n]],Total[#]==d&],Range[n]]],{n,12},{d,Select[Divisors[n*(n+1)/2],#>=n&]}]

Extensions

More terms from Jinyuan Wang, Feb 27 2025
Name edited by Peter Munn, Mar 06 2025