A320438 Irregular triangle read by rows where T(n,k) is the number of set partitions of {1,...,n} with all block-sums equal to d, where d is the k-th divisor of n*(n+1)/2 that is >= n.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 3, 7, 1, 1, 9, 1, 1, 1, 1, 43, 35, 1, 1, 102, 62, 1, 1, 1, 1, 68, 595, 1, 1, 17, 187, 871, 1480, 361, 1, 1, 2650, 657, 1, 1, 9294, 1, 1, 23728, 1, 1, 27763, 4110, 1, 1, 1850, 25035, 108516, 157991, 7636, 1, 1, 11421, 411474, 1
Offset: 1
Examples
Triangle begins: 1 1 1 1 1 1 1 1 1 1 1 4 1 1 3 7 1 1 9 1 1 1 1 43 35 1 1 102 62 1 1 1 1 68 595 1 1 17 187 871 1480 361 1 1 2650 657 1 Row 8 counts the following set partitions: {{18}{27}{36}{45}} {{1236}{48}{57}} {{12348}{567}} {{12345678}} {{138}{246}{57}} {{12357}{468}} {{156}{237}{48}} {{12456}{378}} {{1278}{3456}} {{1368}{2457}} {{1458}{2367}} {{1467}{2358}}
Crossrefs
Programs
-
Mathematica
spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}]; Table[Length[spsu[Select[Subsets[Range[n]],Total[#]==d&],Range[n]]],{n,12},{d,Select[Divisors[n*(n+1)/2],#>=n&]}]
Extensions
More terms from Jinyuan Wang, Feb 27 2025
Name edited by Peter Munn, Mar 06 2025