A320444 Number of uniform hypertrees spanning n vertices.
1, 1, 1, 4, 17, 141, 1297, 17683, 262145, 4861405, 100112001, 2371816701, 61917364225, 1796326510993, 56693912375297, 1947734359001551, 72059082110369793, 2863257607266475419, 121439531096594251777, 5480987217944109919765, 262144000000000000000001
Offset: 0
Keywords
Examples
Non-isomorphic representatives of the 5 unlabeled uniform hypertrees on 5 vertices and their multiplicities in the labeled case, which add up to a(5) = 141: 5 X {{1,5},{2,5},{3,5},{4,5}} 60 X {{1,4},{2,5},{3,5},{4,5}} 60 X {{1,3},{2,4},{3,5},{4,5}} 15 X {{1,2,5},{3,4,5}} 1 X {{1,2,3,4,5}}
Links
- Robert Israel, Table of n, a(n) for n = 0..387
Crossrefs
Programs
-
Maple
f:= proc(n) local d; add((n-1)!/(d! * ((n-1)/d)!) * (n/d)^((n-1)/d - 1), d = numtheory:-divisors(n-1)); end proc: f(0):= 1: f(1):= 1: map(f, [$0..25]); # Robert Israel, Jan 10 2019
-
Mathematica
Table[Sum[n!/(d!*(n/d)!)*((n+1)/d)^(n/d-1),{d,Divisors[n]}],{n,10}]
-
PARI
a(n) = if (n<2, 1, n--; sumdiv(n, d, n!/(d! * (n/d)!) * ((n + 1)/d)^(n/d - 1))); \\ Michel Marcus, Jan 10 2019
Formula
a(n + 1) = Sum_{d|n} n!/(d! * (n/d)!) * ((n + 1)/d)^(n/d - 1).
a(p prime) = 1 + (p + 1)^(p - 1).
Comments