A320486 Keep just the digits of n that appear exactly once; write 0 if all digits disappear.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 0, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 0, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 0, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 0, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 0, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 0, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 0, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 0, 1, 0, 102, 103, 104, 105, 106, 107, 108, 109, 0, 0, 2, 3, 4, 5, 6, 7, 8, 9, 120, 2, 1, 123, 124, 125, 126, 127, 128, 129, 130, 3
Offset: 0
Examples
1231 becomes 23, 1123 becomes 23, 11231 becomes 23, and 11023 becomes 23 (as we don't accept leading zeros). Note that 112323 disappears immediately and we get 0. 101, 110, 11000, 10001 all become 0.
References
- Eric Angelini, Posting to Sequence Fans Mailing List, Oct 24 2018
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- N. J. A. Sloane, Coordination Sequences, Planing Numbers, and Other Recent Sequences (II), Experimental Mathematics Seminar, Rutgers University, Jan 31 2019, Part I, Part 2, Slides. (Mentions this sequence)
Programs
-
Maple
f:= proc(n) local F,S; F:= convert(n,base,10); S:= select(t -> numboccur(t,F)>1, [$0..9]); if S = {} then return n fi; F:= subs(seq(s=NULL,s=S),F); add(F[i]*10^(i-1),i=1..nops(F)) end proc: map(f, [$0..200]); # Robert Israel, Oct 24 2018
-
Mathematica
Table[If[(c=Select[b=IntegerDigits[n],Count[b,#]==1&])=={},0,FromDigits@c],{n,0,131}] (* Giorgos Kalogeropoulos, May 09 2021 *) d1[n_]:=Module[{idn=IntegerDigits[n]},FromDigits[If[DigitCount[n,10,#]>1,Nothing,#]&/@ idn]]; Array[d1,150,0] (* Harvey P. Dale, Jun 23 2023 *)
-
PARI
a(n) = {my(d=digits(n), v = vector(10), res = 0); for(i=1,#d, v[d[i]+1]++); for(i=1,#d,if(v[d[i]+1]==1, res=10*res+d[i]));res}
-
PARI
A320486(n,D=digits(n))=fromdigits(select(d->#select(t->t==d,D)<2,D)) \\ M. F. Hasler, Oct 24 2018
-
Python
def A320486(n): return int('0'+''.join(d if str(n).count(d) == 1 else '' for d in str(n))) # Chai Wah Wu, Nov 19 2018
Comments