cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320522 Numbers k such that k^10 divides 10^k.

Original entry on oeis.org

1, 10, 20, 25, 40, 50, 64, 80, 100, 125, 128, 160, 200, 250, 256, 320, 400, 500, 512, 625, 640, 800, 1000, 1024, 1250, 1280, 1600, 2000, 2048, 2500, 2560, 3125, 3200, 4000, 4096, 5000, 5120, 6250, 6400, 8000, 8192, 10000, 10240, 12500, 12800, 15625, 16000
Offset: 1

Views

Author

Kritsada Moomuang, Oct 14 2018

Keywords

Comments

The sequence consists of the numbers of the form 2^i*5^j (A003592) except for {2, 4, 5, 8, 16, 32}. - Giovanni Resta, Nov 13 2018

Examples

			20 is in the sequence because 20^10 divides 10^20.
5 is not in the sequence because 5^10 does not divide 10^5.
		

Crossrefs

Subsequence of A003592 (numbers of the form 2^i*5^j).
Cf. A008454 (n^10), A011557 (10^n),

Programs

  • GAP
    Filtered([1..16000],k->PowerMod(10,k,k^10)=0); # Muniru A Asiru, Oct 16 2018
  • Mathematica
    Select[Union@ Flatten@ Table[2^a * 5^b, {a, 0, Log[2, #/(1)]}, {b, 0, Log[5, #/(2^a)]}] &[10^5], PowerMod[10, #, #^10] == 0 &] (* Michael De Vlieger, Oct 15 2018 *)
    m = 10^5; DeleteCases[Union @@ Table[2^a*5^b, {a, 0, Log2@ m}, {b, Boole[0 < a < 6], Log[5, m/2^a]}], 5] (* Giovanni Resta, Nov 13 2018 *)
  • PARI
    isok(n) = Mod(10, n^10)^n == 0; \\ Michel Marcus, Oct 14 2018