A320527 Number of chiral pairs of color patterns (set partitions) in a row of length n using exactly 4 colors (subsets).
0, 0, 0, 0, 4, 28, 167, 824, 3840, 16920, 72655, 305140, 1265264, 5193188, 21173607, 85887984, 347150080, 1399355440, 5629755935, 22615859180, 90754215024, 363888497148, 1458169977847, 5840524999144, 23385639542720, 93613165023560, 374664497695215, 1499293455643620, 5999080285068784, 24002040333605908
Offset: 1
Examples
For a(5)=4, the chiral pairs are AABCD-ABCDD, ABACD-ABCDC, ABBCD-ABCCD and ABCAD-ABCDB.
Links
- Index entries for linear recurrences with constant coefficients, signature (8, -12, -44, 121, 12, -228, 144).
Programs
-
Mathematica
k=4; Table[(StirlingS2[n,k] - If[EvenQ[n], StirlingS2[n/2+2,4] - StirlingS2[n/2+1,4] - 2StirlingS2[n/2,4], 2StirlingS2[(n+3)/2,4] - 4StirlingS2[(n+1)/2,4]])/2, {n,30}] Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *) k = 4; Table[(StirlingS2[n, k] - Ach[n, k])/2, {n, 1, 30}] LinearRecurrence[{8, -12, -44, 121, 12, -228, 144}, {0, 0, 0, 0, 4, 28, 167}, 30]
Formula
a(n) = (S2(n,k) - A(n,k))/2, where k=4 is the number of colors (sets), S2 is the Stirling subset number A008277 and A(n,k) = [n>1] * (k*A(n-2,k) + A(n-2,k-1) + A(n-2,k-2)) + [n<2 & n==k & n>=0].
G.f.: (x^4 / Product_{k=1..4} (1 - k*x) - x^4*(1 + x)^2*(1 - 2 x^2) / Product_{k=1..4} (1 - k*x^2)) / 2.
Comments