cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320528 Number of chiral pairs of color patterns (set partitions) in a row of length n using exactly 5 colors (subsets).

Original entry on oeis.org

0, 0, 0, 0, 0, 6, 64, 508, 3428, 21132, 123050, 688850, 3752350, 20032446, 105372624, 548066568, 2826316248, 14478890712, 73794322750, 374602205590, 1895629599050, 9568906539786, 48208435317284, 242500368793628, 1218342441784468, 6115097961883092, 30669103347259650, 153720181809997530, 770100204404335350, 3856500105221902326
Offset: 1

Views

Author

Robert A. Russell, Oct 14 2018

Keywords

Comments

Two color patterns are equivalent if we permute the colors. Chiral color patterns must not be equivalent if we reverse the order of the pattern.

Examples

			For a(6)=6, the chiral pairs are AABCDE-ABCDEE, ABACDE-ABCDED, ABCADE-ABCDEC, ABCDAE-ABCDEB, ABBCDE-ABCDDE, and ABCBDE-ABCDCE.
		

Crossrefs

Col. 5 of A320525.
Cf. A000481 (oriented), A056329 (unoriented), A304975 (achiral).

Programs

  • Magma
    I:=[0,0,0,0,0,6,64,508,3428,21132]; [n le 10 select I[n] else 13*Self(n-1)-48*Self(n-2)-36*Self(n-3)+551*Self(n-4)-683*Self(n-5) -1542*Self(n-6)+3546*Self(n-7)+80*Self(n-8)-4280*Self(n-9) +2400*Self(n-10): n in [1..30]]; // G. C. Greubel, Oct 20 2018
  • Mathematica
    k=5; Table[(StirlingS2[n,k] - If[EvenQ[n], 3StirlingS2[n/2+2,5] - 11StirlingS2[n/2+1,5] + 6StirlingS2[n/2,5], StirlingS2[(n+5)/2,5] - 3StirlingS2[(n+3)/2,5]])/2, {n,30}]
    Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
    k = 5; Table[(StirlingS2[n, k] - Ach[n, k])/2, {n, 1, 30}]
    LinearRecurrence[{13, -48, -36, 551, -683, -1542, 3546, 80, -4280, 2400}, {0, 0, 0, 0, 0, 6, 64, 508, 3428, 21132}, 30]
  • PARI
    m=30; v=concat([0,0,0,0,0,6,64,508,3428,21132], vector(m-10)); for(n=11, m, v[n] = 13*v[n-1]-48*v[n-2]-36*v[n-3]+551*v[n-4]-683*v[n-5] -1542*v[n-6] +3546*v[n-7] +80*v[n-8] -4280*v[n-9] +2400*v[n-10]); v \\ G. C. Greubel, Oct 20 2018
    

Formula

a(n) = (S2(n,k) - A(n,k))/2, where k=5 is the number of colors (sets), S2 is the Stirling subset number A008277 and A(n,k) = [n>1] * (k*A(n-2,k) + A(n-2,k-1) + A(n-2,k-2)) + [n<2 & n==k & n>=0].
G.f.: (x^5 / Product_{k=1..5} (1 - k*x) - x^5 (1 + x) (1 - 3 x^2) (1 + 2 x - 2 x^2) / Product_{k=1..5} (1 - k*x^2)) / 2.
a(n) = (A000481(n) - A304975(n)) / 2 = A000481(n) - A056329(n) = A056329(n) - A304975(n).
a(n) = 13*a(n-1) - 48*a(n-2) - 36*a(n-3) + 551*a(n-4) - 683*a(n-5) - 1542*a(n-6) + 3546*a(n-7) + 80*a(n-8) - 4280*a(n-9) + 2400*a(n-10) for n>10. - Colin Barker, May 12 2020