A320541 Triangle read by rows: T(n,k) (1<=k<=n) = Sum_{i=1..n, j=1..k, gcd(i,j)=1} (n+1-i)*(k+1-j).
1, 3, 8, 6, 16, 31, 10, 26, 50, 80, 15, 39, 75, 120, 179, 21, 54, 103, 164, 244, 332, 28, 72, 137, 218, 324, 441, 585, 36, 92, 175, 278, 413, 562, 745, 948, 45, 115, 218, 346, 514, 699, 926, 1178, 1463, 55, 140, 265, 420, 623, 846, 1120, 1424, 1768, 2136
Offset: 1
Examples
The triangle begins: 1 3 8 6 16 31 10 26 50 80 15 39 75 120 179 21 54 103 164 244 332 28 72 137 218 324 441 585 ... a(1) = 1 because 4 triangles of area 1/2 in a [0 1]X[0 1] square can be formed by cutting the unit square into 2 triangles along the diagonals.
Links
- Seiichi Manyama, Rows n = 1..140, flattened
Crossrefs
Programs
-
Maple
T := proc(m,n) local a,i,j; a:=0; for i from 1 to m do for j from 1 to n do if gcd(i,j)=1 then a:=a+(m+1-i)*(n+1-j); fi; od: od: a; end; for m from 1 to 12 do lprint([seq(T(m,n),n=1..m)]); od: # N. J. A. Sloane, Feb 04 2020
Extensions
Replaced definition (now a comment) by explicit formula. - N. J. A. Sloane, Feb 04 2020
Comments