A320546 Number of partitions of n into parts of exactly four sorts which are introduced in ascending order such that sorts of adjacent parts are different.
1, 7, 33, 130, 464, 1558, 5039, 15886, 49282, 151165, 460352, 1394863, 4212752, 12694566, 38197710, 114820403, 344919283, 1035670246, 3108844526, 9330186438, 27997888759, 84008273161, 252054096569, 756220672185, 2268778953179, 6806570182252, 20420177671614
Offset: 4
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 4..1000
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0 or i=1, k^(n-1), b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))) end: A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k, k*b(n$2, k-1))): a:= n-> (k-> add(A(n, k-i)*(-1)^i/(i!*(k-i)!), i=0..k))(4): seq(a(n), n=4..40);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i == 1, k^(n - 1), b[n, i - 1, k] + If[i > n, 0, k b[n - i, i, k]]]; A[n_, k_] := If[n == 0, 1, If[k < 2, k, k b[n, n, k - 1]]]; a[n_] := With[{k = 4}, Sum[A[n, k - i] (-1)^i/(i! (k - i)!), {i, 0, k}]]; a /@ Range[4, 40] (* Jean-François Alcover, Dec 08 2020, after Alois P. Heinz *)
Formula
a(n) ~ 3^(n-1) / (3! * QPochhammer[1/3]). - Vaclav Kotesovec, Oct 25 2018