A320555 Number of set partitions of [n] such that for each block b the smallest integer interval containing b has at most five elements and for at least one block c the smallest integer interval containing c has exactly five elements.
15, 64, 201, 585, 1741, 5375, 16355, 48601, 141921, 410425, 1182828, 3398411, 9728692, 27745449, 78861484, 223573925, 632578393, 1786856056, 5039984789, 14197033194, 39945491361, 112282665839, 315352029653, 885048266680, 2482371076351, 6958712870273
Offset: 5
Links
- Alois P. Heinz, Table of n, a(n) for n = 5..1000
Programs
-
Maple
b:= proc(n, m, l) option remember; `if`(n=0, 1, add(b(n-1, max(m, j), [subsop(1=NULL, l)[], `if`(j<=m, 0, j)]), j={l[], m+1} minus {0})) end: A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k, b(n, 0, [0$(k-1)]))): a:= n-> (k-> A(n, k) -`if`(k=0, 0, A(n, k-1)))(5): seq(a(n), n=5..50);
-
Mathematica
b[n_, m_, l_List] := b[n, m, l] = If[n == 0, 1, Sum[b[n - 1, Max[m, j], Append[ReplacePart[l, 1 -> Nothing], If[j <= m, 0, j]]], {j, Append[l, m + 1]~Complement~{0}}]]; A[n_, k_] := If[n == 0, 1, If[k < 2, k, b[n, 0, Array[0 &, k - 1]]]]; a[n_] := With[{k = 5}, A[n, k] - If[k == 0, 0, A[n, k - 1]]]; a /@ Range[5, 35] (* Jean-François Alcover, Dec 08 2020, after Alois P. Heinz *)