cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320564 Expansion of Product_{k>=1} (1 + x^k/(1 - x)^k)^k.

Original entry on oeis.org

1, 1, 3, 10, 30, 87, 249, 705, 1974, 5471, 15032, 40997, 111079, 299151, 801139, 2134251, 5657895, 14930596, 39232009, 102673794, 267692321, 695440442, 1800582809, 4646964755, 11956293758, 30673060344, 78470890246, 200218512582, 509557661691, 1293664233400, 3276659862518
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 15 2018

Keywords

Comments

First differences of the binomial transform of A026007.

Crossrefs

Programs

  • Maple
    seq(coeff(series(mul((1+x^k/(1-x)^k)^k,k=1..n),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Oct 15 2018
  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1 + x^k/(1 - x)^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 30; CoefficientList[Series[Exp[Sum[(-1)^(k + 1) (1 - x)^k x^k/(k ((1 - x)^k - x^k)^2), {k, 1, nmax}]], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{k>=1} (-1)^(k+1)*(1 - x)^k*x^k/(k*((1 - x)^k - x^k)^2)).
a(n) ~ Zeta(3)^(1/6) * 2^(n - 13/12) * exp(3^(4/3) * Zeta(3)^(1/3) * n^(2/3)/4 + (3*Zeta(3))^(2/3) * n^(1/3)/8 - Zeta(3)/16) / (3^(1/3) * sqrt(Pi) * n^(2/3)). - Vaclav Kotesovec, Oct 15 2018