A320632 Numbers k such that there exists a pair of factorizations of k into factors > 1 where no factor of one divides any factor of the other.
36, 60, 72, 84, 90, 100, 108, 120, 126, 132, 140, 144, 150, 156, 168, 180, 196, 198, 200, 204, 210, 216, 220, 225, 228, 234, 240, 252, 260, 264, 270, 276, 280, 288, 294, 300, 306, 308, 312, 315, 324, 330, 336, 340, 342, 348, 350, 360, 364, 372, 378, 380, 390
Offset: 1
Keywords
Examples
An example of such a pair for 36 is (4*9)|(6*6).
Links
- Antti Karttunen, Table of n, a(n) for n = 1..23437
- Christophe Cordero, Factorizations of Cyclic Groups and Bayonet Codes, arXiv:2301.13566 [math.CO], 2023, p. 20.
Crossrefs
Cf. A001055, A050336, A285572, A303362, A305149, A305193, A317144, A322435, A322437, A322439, A322440, A322441, A322442.
The following are additional cross-references relating to Granvik's conjecture.
bigomega(n) * omega(n) is A113901(n).
(bigomega(n) - 1) * omega(n) is A307409(n).
sigma_0(n) - bigomega(n) * omega(n) is A328958(n).
sigma_0(n) - 2 - (omega(n) - 1) * nu(n) is A328959(n).
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Select[Range[100],Select[Subsets[facs[#],{2}],And[!Or@@Divisible@@@Tuples[#],!Or@@Divisible@@@Reverse/@Tuples[#]]&]!={}&]
-
PARI
factorizations(n, m=n, f=List([]), z=List([])) = if(1==n, listput(z,Vec(f)); z, my(newf); fordiv(n, d, if((d>1)&&(d<=m), newf = List(f); listput(newf,d); z = factorizations(n/d, d, newf, z))); (z)); is_ndf_pair(fac1,fac2) = { for(i=1,#fac1,for(j=1,#fac2,if(!(fac1[i]%fac2[j])||!(fac2[j]%fac1[i]),return(0)))); (1); }; has_at_least_one_ndfpair(z) = { for(i=1,#z,for(j=i+1,#z,if(is_ndf_pair(z[i],z[j]),return(1)))); (0); }; isA320632(n) = has_at_least_one_ndfpair(Vec(factorizations(n))); \\ Antti Karttunen, Dec 10 2020
Comments