cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320661 a(n) = 2^(n+3) - 6*n - 7.

Original entry on oeis.org

1, 3, 13, 39, 97, 219, 469, 975, 1993, 4035, 8125, 16311, 32689, 65451, 130981, 262047, 524185, 1048467, 2097037, 4194183, 8388481, 16777083, 33554293, 67108719, 134217577, 268435299, 536870749, 1073741655, 2147483473, 4294967115, 8589934405, 17179868991
Offset: 0

Views

Author

Paul Curtz, Nov 14 2018

Keywords

Comments

Companion to A247618 which has the same recurrence.
For this recurrence the main sequence is A000295.

Crossrefs

Programs

  • GAP
    List([0..40], n -> 2^(n+3) -6*n -7); # G. C. Greubel, Nov 15 2018
  • Magma
    [2^(n+3) -6*n -7: n in [0..40]]; // G. C. Greubel, Nov 15 2018
    
  • Mathematica
    a[n_]:=2^(n+3) - 6*n - 7; Array[a,32,0] (* Amiram Eldar, Nov 14 2018 *)
  • PARI
    vector(40, n, n--; 2^(n+3) -6*n -7) \\ G. C. Greubel, Nov 15 2018
    
  • Sage
    [2^(n+3) -6*n -7 for n in range(40)] # G. C. Greubel, Nov 15 2018
    

Formula

a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3).
a(n+1) = a(n-1) + 12*A000225(n). a(-1) = 3.
a(2*n) mod 9 = period 3: repeat [1, 4, 7].
a(2*n+1) mod 9 = 3.
a(n) mod 9 = period 6: repeat [1, 3, 4, 3, 7, 3].
a(n) mod 10 = period 20: repeat [1, 3, 3, 9, 7, 9, 9, 5, 3, 5, 5, 1, 9, 1, 1, 7, 5, 7, 7, 3] = Im(n). Im(n-1) = [3, 1, 3, 3, 9, 7, 9, 9, 5, 3, 5, 5, 1, 9, 1, 1, 7, 5, 7, 7]. Disordered [1, 1, 1, 1, 3, 3, 3, 3, 5, 5, 5, 5, 7, 7, 7, 7, 9, 9, 9, 9].
a(n+1) - a(n) = 2^(n+3) - 6.
From G. C. Greubel, Nov 15 2018: (Start)
G.f.: (1-x+6*x^2)/((1-2*x)*(1-x)^2).
E.g.f.: 8*exp(2*x) - (7 + 6*x)*exp(x). (End)

Extensions

More terms from Amiram Eldar, Nov 14 2018