cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320665 Number of non-isomorphic multiset partitions of weight n with no singletons or vertices that appear only once.

Original entry on oeis.org

1, 0, 1, 1, 5, 6, 27, 47, 169, 406, 1327, 3790, 12560, 39919, 136821, 470589, 1687981, 6162696, 23173374, 88981796, 349969596, 1405386733, 5764142220, 24111709328, 102825231702, 446665313598, 1975339030948, 8888051121242, 40667889052853, 189126710033882, 893526261542899
Offset: 0

Views

Author

Gus Wiseman, Oct 18 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}. This sequence counts non-isomorphic multiset partitions with no singletons whose dual also has no singletons.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(6) = 27 multiset partitions:
  {{1,1}}  {{1,1,1}}  {{1,1,1,1}}    {{1,1,1,1,1}}    {{1,1,1,1,1,1}}
                      {{1,1,2,2}}    {{1,1,2,2,2}}    {{1,1,1,2,2,2}}
                      {{1,1},{1,1}}  {{1,1},{1,1,1}}  {{1,1,2,2,2,2}}
                      {{1,1},{2,2}}  {{1,1},{1,2,2}}  {{1,1,2,2,3,3}}
                      {{1,2},{1,2}}  {{1,1},{2,2,2}}  {{1,1},{1,1,1,1}}
                                     {{1,2},{1,2,2}}  {{1,1,1},{1,1,1}}
                                                      {{1,1},{1,2,2,2}}
                                                      {{1,1,1},{2,2,2}}
                                                      {{1,1,2},{1,2,2}}
                                                      {{1,1},{2,2,2,2}}
                                                      {{1,1,2},{2,2,2}}
                                                      {{1,1},{2,2,3,3}}
                                                      {{1,1,2},{2,3,3}}
                                                      {{1,2},{1,1,2,2}}
                                                      {{1,2},{1,2,2,2}}
                                                      {{1,2},{1,2,3,3}}
                                                      {{1,2,2},{1,2,2}}
                                                      {{1,2,3},{1,2,3}}
                                                      {{2,2},{1,1,2,2}}
                                                      {{1,1},{1,1},{1,1}}
                                                      {{1,1},{1,2},{2,2}}
                                                      {{1,1},{2,2},{2,2}}
                                                      {{1,1},{2,2},{3,3}}
                                                      {{1,1},{2,3},{2,3}}
                                                      {{1,2},{1,2},{1,2}}
                                                      {{1,2},{1,2},{2,2}}
                                                      {{1,2},{1,3},{2,3}}
		

Crossrefs

Programs

  • PARI
    \\ See links in A339645 for combinatorial species functions.
    seq(n)={my(A=symGroupSeries(n)); NumUnlabeledObjsSeq(sCartProd(sExp(A-x*sv(1)), sExp(A-x*sv(1))))} \\ Andrew Howroyd, Jan 17 2023
    
  • PARI
    Vec(G(20,1)) \\ G defined in A369287. - Andrew Howroyd, Jan 28 2024

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 17 2023