A320690 Number of partitions of n with up to three distinct kinds of 1.
1, 3, 4, 5, 8, 12, 17, 24, 33, 45, 61, 81, 107, 141, 183, 236, 304, 388, 492, 622, 782, 979, 1221, 1515, 1874, 2312, 2840, 3477, 4247, 5171, 6278, 7604, 9185, 11068, 13308, 15963, 19108, 22828, 27213, 32378, 38457, 45592, 53955, 63748, 75193, 88553, 104130
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Crossrefs
Column k=3 of A292622.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i=1, binomial(3, n), `if`(i>n, 0, b(n-i, i))+b(n, i-1)) end: a:= n-> b(n$2): seq(a(n), n=0..60);
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, Binomial[3, n], If[i > n, 0, b[n - i, i]] + b[n, i - 1]]; a[n_] := b[n, n]; a /@ Range[0, 60] (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz *)
Formula
a(n) ~ Pi * sqrt(2) * exp(Pi*sqrt(2*n/3)) / (3 * n^(3/2)). - Vaclav Kotesovec, Oct 24 2018
G.f.: (1 + x)^3 * Product_{k>=2} 1 / (1 - x^k). - Ilya Gutkovskiy, Apr 24 2021