cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320691 Number of partitions of n with up to four distinct kinds of 1.

Original entry on oeis.org

1, 4, 7, 9, 13, 20, 29, 41, 57, 78, 106, 142, 188, 248, 324, 419, 540, 692, 880, 1114, 1404, 1761, 2200, 2736, 3389, 4186, 5152, 6317, 7724, 9418, 11449, 13882, 16789, 20253, 24376, 29271, 35071, 41936, 50041, 59591, 70835, 84049, 99547, 117703, 138941, 163746
Offset: 0

Views

Author

Alois P. Heinz, Oct 19 2018

Keywords

Crossrefs

Column k=4 of A292622.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1,
          binomial(4, n), `if`(i>n, 0, b(n-i, i))+b(n, i-1))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..60);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0 || i == 1, Binomial[4, n], If[i > n, 0, b[n - i, i]] + b[n, i - 1]];
    a[n_] := b[n, n];
    a /@ Range[0, 60] (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz *)

Formula

a(n) ~ Pi * 2^(3/2) * exp(Pi*sqrt(2*n/3)) / (3 * n^(3/2)). - Vaclav Kotesovec, Oct 24 2018
G.f.: (1 + x)^4 * Product_{k>=2} 1 / (1 - x^k). - Ilya Gutkovskiy, Apr 24 2021