A320695 Number of partitions of n with up to eight distinct kinds of 1.
1, 8, 29, 65, 108, 158, 230, 338, 488, 688, 953, 1303, 1761, 2354, 3118, 4097, 5340, 6910, 8888, 11365, 14448, 18273, 23004, 28832, 35981, 44719, 55374, 68333, 84037, 103010, 125885, 153399, 186407, 225915, 273099, 329331, 396212, 475603, 569671, 680926
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Crossrefs
Column k=8 of A292622.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i=1, binomial(8, n), `if`(i>n, 0, b(n-i, i))+b(n, i-1)) end: a:= n-> b(n$2): seq(a(n), n=0..60);
Formula
a(n) ~ Pi * 2^(11/2) * exp(Pi*sqrt(2*n/3)) / (3 * n^(3/2)). - Vaclav Kotesovec, Oct 24 2018
G.f.: (1 + x)^8 * Product_{k>=2} 1 / (1 - x^k). - Ilya Gutkovskiy, Apr 24 2021