A320696 Number of partitions of n with up to nine distinct kinds of 1.
1, 9, 37, 94, 173, 266, 388, 568, 826, 1176, 1641, 2256, 3064, 4115, 5472, 7215, 9437, 12250, 15798, 20253, 25813, 32721, 41277, 51836, 64813, 80700, 100093, 123707, 152370, 187047, 228895, 279284, 339806, 412322, 499014, 602430, 725543, 871815, 1045274
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Crossrefs
Column k=9 of A292622.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i=1, binomial(9, n), `if`(i>n, 0, b(n-i, i))+b(n, i-1)) end: a:= n-> b(n$2): seq(a(n), n=0..60);
Formula
a(n) ~ Pi * 2^(13/2) * exp(Pi*sqrt(2*n/3)) / (3 * n^(3/2)). - Vaclav Kotesovec, Oct 24 2018
G.f.: (1 + x)^9 * Product_{k>=2} 1 / (1 - x^k). - Ilya Gutkovskiy, Apr 24 2021