cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320733 Number of partitions of n with two sorts of part 1 which are introduced in ascending order.

Original entry on oeis.org

1, 1, 3, 6, 13, 26, 54, 108, 219, 439, 882, 1766, 3539, 7081, 14172, 28351, 56716, 113443, 226908, 453833, 907698, 1815424, 3630893, 7261829, 14523725, 29047513, 58095121, 116190338, 232380810, 464761759, 929523710, 1859047619, 3718095507, 7436191301
Offset: 0

Views

Author

Alois P. Heinz, Oct 20 2018

Keywords

Crossrefs

Column k=2 of A292745.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i<2, add(
          Stirling2(n, j), j=0..2), add(b(n-i*j, i-1), j=0..n/i))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..40);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0 || i < 2, Sum[StirlingS2[n, j], {j, 0, 2}], Sum[b[n - i j, i - 1], {j, 0, n/i}]];
    a[n_] := b[n, n];
    a /@ Range[0, 40] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)

Formula

G.f.: ((1 - x)/(1 - 2*x)) * Product_{k>=2} 1/(1 - x^k). - Ilya Gutkovskiy, Dec 03 2019