A320747 Array read by antidiagonals: T(n,k) is the number of color patterns (set partitions) in an oriented cycle of length n using k or fewer colors (subsets).
1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 4, 1, 1, 2, 3, 6, 4, 1, 1, 2, 3, 7, 9, 8, 1, 1, 2, 3, 7, 11, 26, 10, 1, 1, 2, 3, 7, 12, 39, 53, 20, 1, 1, 2, 3, 7, 12, 42, 103, 146, 30, 1, 1, 2, 3, 7, 12, 43, 123, 367, 369, 56, 1, 1, 2, 3, 7, 12, 43, 126, 503, 1235, 1002, 94, 1, 1, 2, 3, 7, 12, 43, 127, 539, 2008, 4439, 2685, 180, 1, 1, 2, 3, 7, 12, 43, 127, 543, 2304, 8720, 15935, 7434, 316, 1, 1, 2, 3, 7, 12, 43, 127, 544, 2356, 11023, 38365, 58509, 20441, 596, 1
Offset: 1
Examples
Array begins with T(1,1): 1 1 1 1 1 1 1 1 1 1 1 1 ... 1 2 2 2 2 2 2 2 2 2 2 2 ... 1 2 3 3 3 3 3 3 3 3 3 3 ... 1 4 6 7 7 7 7 7 7 7 7 7 ... 1 4 9 11 12 12 12 12 12 12 12 12 ... 1 8 26 39 42 43 43 43 43 43 43 43 ... 1 10 53 103 123 126 127 127 127 127 127 127 ... 1 20 146 367 503 539 543 544 544 544 544 544 ... 1 30 369 1235 2008 2304 2356 2360 2361 2361 2361 2361 ... 1 56 1002 4439 8720 11023 11619 11697 11702 11703 11703 11703 ... 1 94 2685 15935 38365 54682 60499 61579 61684 61689 61690 61690 ... 1 180 7434 58509 173609 284071 336447 349746 351619 351766 351772 351773 ... For T(4,2)=4, the patterns are AAAA, AAAB, AABB, and ABAB. For T(4,3)=6, the patterns are the above four, AABC and ABAC.
References
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
Crossrefs
Programs
-
Mathematica
Adnk[d_,n_,k_] := Adnk[d,n,k] = If[n>0 && k>0, Adnk[d,n-1,k]k + DivisorSum[d, Adnk[d,n-1,k-#] &], Boole[n==0 && k==0]] Table[Sum[DivisorSum[n, EulerPhi[#] Adnk[#,n/#,j] &], {j,k-n+1}]/n, {k,15}, {n,k}] // Flatten
-
PARI
\\ R is A152175 as square matrix R(n) = {Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))} T(n)={my(M=R(n)); for(i=2, n, M[,i] += M[,i-1]); M} { my(A=T(12)); for(n=1, #A, print(A[n, ])) } \\ Andrew Howroyd, Nov 03 2019
Comments