A320754 Number of partitions of n with eight kinds of 1.
1, 8, 37, 129, 376, 966, 2258, 4902, 10026, 19520, 36459, 65721, 114877, 195454, 324706, 528069, 842531, 1321214, 2039553, 3103562, 4660814, 6914927, 10144558, 14728160, 21176077, 30171935, 42625765, 59741868, 83105140, 114790422, 157500479, 214739450
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Crossrefs
Column k=8 of A292508.
Programs
-
Magma
m:=40; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)^8*(&*[1-x^j: j in [2..30]])))); // G. C. Greubel, Oct 27 2018 -
Maple
a:= proc(n) option remember; `if`(n=0, 1, add( (numtheory[sigma](j)+7)*a(n-j), j=1..n)/n) end: seq(a(n), n=0..40);
-
Mathematica
nmax = 50; CoefficientList[Series[1/((1-x)^7 * Product[1-x^k, {k, 1, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 24 2018 *)
-
PARI
x='x+O('x^40); Vec(1/((1-x)^8*prod(j=2, 40, 1-x^j))) \\ G. C. Greubel, Oct 27 2018
Formula
G.f.: 1/(1-x)^8 * 1/Product_{j>1} (1-x^j).
Euler transform of 8,1,1,1,... .
a(n) ~ 2^(3/2) * 3^3 * n^(5/2) * exp(Pi*sqrt(2*n/3)) / Pi^7. - Vaclav Kotesovec, Oct 24 2018