cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320754 Number of partitions of n with eight kinds of 1.

Original entry on oeis.org

1, 8, 37, 129, 376, 966, 2258, 4902, 10026, 19520, 36459, 65721, 114877, 195454, 324706, 528069, 842531, 1321214, 2039553, 3103562, 4660814, 6914927, 10144558, 14728160, 21176077, 30171935, 42625765, 59741868, 83105140, 114790422, 157500479, 214739450
Offset: 0

Views

Author

Alois P. Heinz, Oct 20 2018

Keywords

Crossrefs

Column k=8 of A292508.

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)^8*(&*[1-x^j: j in [2..30]])))); // G. C. Greubel, Oct 27 2018
  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          (numtheory[sigma](j)+7)*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..40);
  • Mathematica
    nmax = 50; CoefficientList[Series[1/((1-x)^7 * Product[1-x^k, {k, 1, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 24 2018 *)
  • PARI
    x='x+O('x^40); Vec(1/((1-x)^8*prod(j=2, 40, 1-x^j))) \\ G. C. Greubel, Oct 27 2018
    

Formula

G.f.: 1/(1-x)^8 * 1/Product_{j>1} (1-x^j).
Euler transform of 8,1,1,1,... .
a(n) ~ 2^(3/2) * 3^3 * n^(5/2) * exp(Pi*sqrt(2*n/3)) / Pi^7. - Vaclav Kotesovec, Oct 24 2018