cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320756 Number of partitions of n with ten kinds of 1.

Original entry on oeis.org

1, 10, 56, 231, 782, 2299, 6074, 14751, 33454, 71677, 146359, 286762, 542042, 992776, 1768216, 3071725, 5217765, 8685019, 14191826, 22802195, 36073378, 56259488, 86590156, 131648984, 197883889, 294290729, 433323334, 632097807, 913977420, 1310647455, 1864817969
Offset: 0

Views

Author

Alois P. Heinz, Oct 20 2018

Keywords

Crossrefs

Column k=10 of A292508.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)^10*(&*[1-x^j: j in [2..30]])))); // G. C. Greubel, Oct 27 2018
  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          (numtheory[sigma](j)+9)*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..40);
  • Mathematica
    nmax = 50; CoefficientList[Series[1/((1-x)^9 * Product[1-x^k, {k, 1, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 24 2018 *)
  • PARI
    x='x+O('x^30); Vec(1/((1-x)^10*prod(j=2, 40, 1-x^j))) \\ G. C. Greubel, Oct 27 2018
    

Formula

G.f.: 1/(1-x)^10 * 1/Product_{j>1} (1-x^j).
Euler transform of 10,1,1,1,... .
a(n) ~ 2^(5/2) * 3^4 * n^(7/2) * exp(Pi*sqrt(2*n/3)) / Pi^9. - Vaclav Kotesovec, Oct 24 2018