cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320787 Number of multisets of exactly two partitions of positive integers into distinct parts with total sum of parts equal to n.

Original entry on oeis.org

1, 1, 3, 4, 8, 11, 18, 25, 38, 52, 75, 101, 140, 186, 252, 330, 438, 567, 740, 948, 1221, 1549, 1973, 2482, 3129, 3907, 4884, 6055, 7512, 9255, 11402, 13967, 17102, 20836, 25372, 30760, 37262, 44970, 54221, 65156, 78220, 93622, 111937, 133481, 158996, 188930
Offset: 2

Views

Author

Alois P. Heinz, Oct 21 2018

Keywords

Crossrefs

Column k=2 of A285229.
Cf. A000009.

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(add(`if`(d::odd,
          d, 0), d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
        end:
    b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1)*x^j*binomial(g(i)+j-1, j), j=0..n/i))), x, 3)
        end:
    a:= n-> coeff(b(n$2), x, 2):
    seq(a(n), n=2..60);
  • Mathematica
    g[n_] := g[n] = If[n == 0, 1, Sum[Sum[If[OddQ[d], d, 0], {d, Divisors[j]}]* g[n - j], {j, 1, n}]/n];
    b[n_, i_] := b[n, i] = Series[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*x^j*Binomial[g[i] + j - 1, j], {j, 0, n/i}]]], {x, 0, 3}];
    a[n_] := SeriesCoefficient[b[n, n], {x, 0, 2}];
    a /@ Range[2, 60] (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz *)

Formula

a(n) = [x^n y^2] Product_{j>=1} 1/(1-y*x^j)^A000009(j).