A320789 Number of multisets of exactly four partitions of positive integers into distinct parts with total sum of parts equal to n.
1, 1, 3, 5, 11, 18, 34, 55, 96, 152, 248, 386, 607, 921, 1405, 2092, 3112, 4551, 6635, 9545, 13683, 19401, 27393, 38346, 53441, 73928, 101840, 139398, 190020, 257601, 347836, 467381, 625686, 833917, 1107547, 1465136, 1931754, 2537747, 3323490, 4338012, 5645645
Offset: 4
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 4..1000
Programs
-
Maple
g:= proc(n) option remember; `if`(n=0, 1, add(add(`if`(d::odd, d, 0), d=numtheory[divisors](j))*g(n-j), j=1..n)/n) end: b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*x^j*binomial(g(i)+j-1, j), j=0..n/i))), x, 5) end: a:= n-> coeff(b(n$2), x, 4): seq(a(n), n=4..60);
-
Mathematica
g[n_] := g[n] = If[n == 0, 1, Sum[Sum[If[OddQ[d], d, 0], {d, Divisors[j]}]* g[n - j], {j, 1, n}]/n]; b[n_, i_] := b[n, i] = Series[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*x^j*Binomial[g[i] + j - 1, j], {j, 0, n/i}]]], {x, 0, 5}]; a[n_] := SeriesCoefficient[b[n, n], {x, 0, 4}]; a /@ Range[4, 60] (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz *)
Formula
a(n) = [x^n y^4] Product_{j>=1} 1/(1-y*x^j)^A000009(j).