A320791 Number of multisets of exactly six partitions of positive integers into distinct parts with total sum of parts equal to n.
1, 1, 3, 5, 11, 19, 37, 62, 112, 187, 320, 523, 866, 1386, 2229, 3510, 5516, 8538, 13172, 20073, 30461, 45781, 68469, 101586, 149991, 219922, 320925, 465492, 672055, 965063, 1379741, 1962957, 2781094, 3922672, 5511041, 7710818, 10748577, 14926037, 20654385
Offset: 6
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 6..1000
Programs
-
Maple
g:= proc(n) option remember; `if`(n=0, 1, add(add(`if`(d::odd, d, 0), d=numtheory[divisors](j))*g(n-j), j=1..n)/n) end: b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*x^j*binomial(g(i)+j-1, j), j=0..n/i))), x, 7) end: a:= n-> coeff(b(n$2), x, 6): seq(a(n), n=6..60);
Formula
a(n) = [x^n y^6] Product_{j>=1} 1/(1-y*x^j)^A000009(j).